AG8旗舰厅

工程案例展示
AG8旗舰厅

AG8旗舰厅通风降温系统

电 话:0579-81328720> 传 真:0579-81328720
联系人
售前咨询:13388660553
技术指导:18858318765
售后服务:15068216608
地址:上海 金华 嘉兴 襄阳

负压风机生产厂家_对电站轴流风机可靠性影响因素及防范对策风机

风机是火力发电厂中的关键辅机,轴流风机因效率高和能耗低而被广泛采用。在实际运行中,不少电厂因轴流风机非凡是动叶可调轴流风机的可靠性差,频频发生故障,导致电厂非计划停机或减负荷,影响了机组发电量。近几年来,广东地区的几家电厂如珠江电厂4×300 MW、南海电厂2×200 MW、恒运C厂1×210 MW均发生过动叶可调轴流风机断叶片事故,也有在同一电厂反复多次发生,严重影响机组安全满发。因此,从根本上解决这些问题,提高大型火电厂排烟风机运行的可靠性显得十分必要和迫切。

1 电站风机可靠性概念

电站风机可靠性统计的状态划分如下:

送引风机运行可靠性可用以下两个重要参数说明。

式中 tSH——运行小时数,指风机处于运行状态的小时数;

   tUOH——非计划停运小时数,指风机处于非计划停运状态的小时数,亦称事故停运小时数。

90年代以前,我国大型电站锅炉风机引起的非计划停机和非计划降负荷较频繁,据统计,在125 MW、200 MW、300 MW及600 MW机组中,按电厂损失的等效停运小时算,送、引风机均排在影响因素的前10位,与发达国家的差距较大。

90年代以后,我国几个主要电站屋顶风机制造厂设备质量提高较快,针对我国电厂的实际情况,引进外国先进技术,使电站风机非凡是动叶可调轴流风机的可靠性不断地得到提高。例如:1997年某鼓风机厂对其利用引进技术生产的、在15套300 MW火电机组中使用的28台动叶可调轴流式送风机和24台动叶可调轴流式引风机进行可靠性分析,发现其运行率已达99%。其他厂家的产品的可靠性也有较大的提高。

2 影响轴流风机可靠性的因素

2.1 电站风机事故分类

第1类事故:风机故障引起火电机组退出运行。

第2类事故:风机故障只引起火电机组出力降低,还没有造成火电机组退出运行,或送、引风机仅有某一台退出运行。

第3类事故:风机损坏不严重,不需要送、引风机退出运行进行维修。

第1、2类事故直接影响风机运行可靠性,第3类则是潜在的影响因素。

2.2 轴流风机主要故障

a)转子故障。如转子不平衡、转子振动等,最严重的甚至发生叶轮飞车事故。

b)叶片产生裂纹或断裂。在送、引风机上均有可能发生,近几年在多个大型电厂已发生多宗。

c)叶片磨损。主要是发生在引风机上。由于电除尘器投入时机把握不好或电除尘器故障,造成引风机磨损。这是燃煤电站引风机最轻易发生的故障。

d)轴承损坏。

e)电机故障。如过电流等,严重时烧坏电机。

f)油站漏油,调节油压不稳定。既影响风机的调节性能也威胁风机的安全。

2.3 轴流风机发生故障的原因

2.3.1 产品设计和制造方面

a)结构设计不合理,强度设计中未充分考虑动荷载。

b)气动设计不完善。对气动特性、膨胀不明。

c)叶片强度安全系数不够,叶片材质差。

d)叶片铸造质量差。

e)焊接、装配质量差。如叶片螺栓脱落打坏叶片等。

f)控制油站质量差。

g)监测、保护附件失灵。

2.3.2 运行、检修方面

a)轴流风机长期在失速条件下工作,气流压力脉动幅值显著增加,叶片共振受损。

b)不按风机特性要求进行启动并车,风机工况与工程特性不匹配。

c)不投电除尘或电除尘效率低导致风机入口含尘浓度高。

d)两台风机并列运行时,两者工作点差异较大。

e)轴流风机喘振保护失灵。

f)无定期检修或检修不良。

2.3.3 安装方面

a)轴系不平衡或联接不好,导致风机振动大、轴承、联轴器易损坏。

b)执行机构安装误差大,就地指示值与控制室反馈值不一致,导致操作不准确。

2.3.4 风机选型与工程设计方面

风机选型不当造成风机实际运行点在不稳定气流区或接近甚至进入失速区,以及风机管路工程特性不合理,均可造成风机转子有关部件的疲惫与损坏。

3 提高轴流风机可靠性的措施

3.1 选型

电站锅炉风机的型式一般有离心式、静叶可调轴流和动叶可调轴流风机,应根据具体使用场合,经技术经济比较确定风机型式。3种风机的比较见表1。

表1 3种风机的比较

项目离心式静调轴流动调轴流结构复杂程度低中高对介质含尘量的适应性好中差可比运行效率低中高可比设备价格低中高可靠性高中低
选择轴流风机时,设计点应落在效率最高、并在此基础上动叶角度再开大10°~15°的曲线上,这样,即使机组在低于额定工况下运行,风机仍可在最高效率区内运行。

对于燃煤锅炉,由于动叶可调轴流风机圆周速度高,考虑到磨损问题,宜采用中速,不宜选用过高转速。

3.2 并联设计与运行

在选择动叶可调轴流风机的参数时,除了按有关规程规定给出裕度外,还要依据电厂实际情况,不仅考虑最大保证工况点、MCR工况、100%负荷工况,还要考虑点火工况以及风机安全并车工况。后两种工况往往被人忽视而给风机的调试与运行带来困难。故应非凡注重动叶可调轴流风机的并联设计与运行。

两台风机并联运行在C点,但每台风机运行在各自特性曲线的A点上。当第1台风机保持同样叶片角度运行时,运行点将移到B点,第2台风机要启动并入时,关闭出口门启动,叶片角度调至最小。打开隔离门后,第2台风机将在D点运行,逐渐开大其角度,并调小第1台风机角度,它们的运行点将分别沿DE和BE线移动,到达E点时两台风机并联,再同时调节两台风机到所需的参数。

可以看出,当第1台风机运行点压力高于第2台风机失速线的最低点S的压力时,第2台风机启动将发生喘振,这时需降低第1台风机出力,使B点位于S点之下再启动第2台风机。

3.3 其他设计措施

假如可以降低风机负荷,总是可以并车的,如燃油锅炉。但对于某些燃煤锅炉,例如中速直吹式制粉工程的冷一次风机,由于其制粉工程必须有一个最低的干燥出力要求和送粉压头,在风机出力下降受到限制的情况下,有两个方法解决并联运行问题。一是选择风机时计算好单台风机按要求工况运行时工程阻力,使S点高于该阻力线,这意味着设计点位于特性曲线更下端,以致压头较高风机效率较低。二是可以在轴流风机风道上加一个旁路再循环门,启动该风机时,先关闭出口门,打开循环门。待第2台风机越过失速线后打开出口门,关闭循环门,这样做的缺点是增加了初投资,增加了送风倒回泄漏的可能性。

在设计风机进出口连接管道时,要力求避免产生涡流的可能性,某些转弯处还应采取加装导流板的措施。

3.4 调整与维护

a)必须确保动叶实际角度与就地指示值及与控制室反馈值相一致。若误差大,运行人员便难以判定动叶真实角度,从而影响运行工况。严重时,风机因长时间处于失速边缘或失速区内运行而导致断叶片事故的发生。

b)对于燃煤电站,不能让引风机长期在超标烟尘中受磨。解决轴流风机磨损问题的关键是降低风机入口含尘浓度和灰粒尺寸。为此,应加强清灰等工作。

c)加强对电除尘器的治理,确保电除尘器运行正常,减少烟尘对引风机叶片的磨损。

d)确保风机喘振保护正常投入。

4 结束语

轴流风机非凡是动叶可调轴流风机现在及将来在火力发电厂中都被广泛使用,其运行可靠性对电厂按计划稳发满发至关重要。我国电站风机可靠性与先进国家差距正在缩小。要提高风机运行可靠性,除了须提高风机本身设计、制造质量外,设计选型、运行及维护方式也至关重要。



摘 要:目的 提高风机叶片的寿命。方法 为改变叶片表面耐磨性能,对其进行强化处理。选择了强化方法及材料,确定了工艺及措施,并运用于生产实际,负压风机生产厂家。结果 叶片寿命提高 4 倍左右,保证了风机在一个大修期内不会因磨损而造成停机。结论 作者研究得出的堆焊技术,经生产实际检验,是切实可行的,可以推广至同类应用场合。
关键词:风机叶片;寿命;堆焊

引 言

锅炉是火力发电的动力源。排粉机、 引风机(统称风机)是锅炉机组中的重要组成设备。排粉机用于输送煤粉;引风机用来抽吸烟气,使其经烟囱排烟。太原一电厂 1#~8# 锅炉机组的风机叶轮,在工作过程中,因转速高(1 480 r/min 以上),且承受一定的风压,叶片会受到尘埃颗粒及烟气的摩擦与腐蚀作用,一般运行 7 个月左右,就会发生叶片被冲刷磨穿现象,导致叶轮寿命下降,需要停机检修。这会造成相应的锅炉机组停止运行,不仅增加了工人维修的劳动强度,加大了装拆费用、 备品备件用量及相应费用,更为严重的是停机会影响发电量,造成严重的经济损失及社会影响。

如何提高风机叶片的寿命(最起码在锅炉的一个大修期内不发生磨损破坏),是迫切需要解决的一个重要问题。作者根据风机使用的工作条件,对叶片磨损原因进行了分析,基于提高叶轮叶片寿命的需要,对叶片表面进行强化处理。选择了堆焊方法及堆焊材料,确定了堆焊工艺,并应用于生产实际,取得了令人满意的效果。

1 风机叶轮结构及技术要求

锅炉机组的风机规格一般不统一,叶轮直径在 (1 600~2 000) mm 之间。作者以直径 1 600 mm 的排粉机叶轮为例加以说明。图 1 为叶轮结构示意图。

对叶轮的技术要求:
(1) 后盘不平度≤0.5/100;
(2) 后盘外圆处端跳偏差≤4 mm;
(3) 圆盘外圆处径跳偏差≤3 mm;
(4) 锥形前盘外圆处端跳偏差≤6 mm;
(5) 叶片出口工作面对后盘的不垂直度偏差≤1/100;
(6) 经静、 动平衡校正。

2 叶片强化方法及材料的选择

磨损是一种与材料表面状态有关的现象。要提高叶轮的寿命,必须对叶片表面进行强化,使其能经受住磨损。

2.1 磨损原因分析

作者现场考察了已磨损叶片的表面状况,发现磨损最严重的部位已成豁口状(局部磨穿),稍严重部位已磨成薄刃状,玻璃钢负压风机,其他部位的表面磨成一道道微细沟槽,车间降温。根据现场工作条件,判定叶轮受到磨料磨损、 冲蚀磨损、 热磨损等多重作用。其中,主要是受到磨料磨损,即微小的尘埃和煤灰等颗粒,在风压作用下,对高速运转的叶片表面进行了显微切削,造成了叶片的磨损[1]。

2.2 选择强化方法

就一般情况而言,对工件表面进行强化的方法有多种,如渗碳、 刷镀及等离子喷涂等。针对风机的使用工况及现场条件,可行的方法仅有氧乙炔喷焊及电弧堆焊。

在试板上分别进行了氧乙炔喷焊与电弧堆焊的对比试验。喷焊(喷涂后重溶)加热速度慢、 加热时间长,导致试件变形严重,但稀释率较低;而电弧堆焊加热时间短,试件变形较小,但稀释率较高。因叶轮的形状及刚度等原因,叶轮变形后校形较困难,加之在生产制造叶轮的过程中,叶轮本身已有一定的制造偏差,故为保证叶轮的尺寸及形位偏差这一基本要求,采用变形较小的电弧堆焊方法。

2.3 选择材料

受磨料磨损的工件,一般选用碳化钨或高铬合金铸铁作为堆焊材料。但采用电弧堆焊的方法,会使碳化钨原始颗粒大部分熔化,在堆焊层析出硬度并不算高的含钨复合化合物,影响耐磨性的提高;而采用高铬合金铸铁作为堆焊材料,可使堆焊层含有 Cr7C3 高硬相,且其价格比碳化钨便宜[2,3]。作者分别选择了牡丹江、 天津、 哈尔滨三个厂家生产的堆焊材料进行了对比试验,结果如表 1 所示。

表 1 堆焊材料对比试验
序号生产地合金体系堆焊后硬度表面状况1#牡丹江Fe-Cr-BHRC>50积瘤状2#天 津Cr-Ni-SiHRC43平整3#哈尔滨Fe-Cr-BHRC>50平整

从表 1 可以看出,1# 材料堆焊后表面硬度高,但焊接工艺性能差,堆焊层表面呈“积瘤状”、 不平滑;为避免在叶轮使用过程中,在“积瘤”处“挂灰”,破坏叶轮动平衡,故不采用。2# 材料堆焊后,虽然表面成型较平滑,但其硬度较低,因其耐磨性较差,故也不采用。3# 材料无论在表面成型,还是在表面硬度方面均较好,故选其为堆焊材料。

3 堆焊工艺及结果

3.1 堆焊工艺

工艺是影响堆焊质量的重要因素。根据对叶轮的要求,把堆焊叶片的工艺重点放在了降低稀释率和减少焊后变形这两个方面。

3.1.1 降低稀释率

堆焊层的稀释率,反映了堆焊层中母材熔入数量的百分比。叶轮母材一般为 Q235 或 16 Mn。母材熔化后对耐磨合金材料起稀释作用,会降低堆焊层合金化的效果,影响耐磨性。

在保证母材与耐磨合金相互熔合的前提下,降低稀释率就是减少母材熔化量。为此,在正式堆焊叶轮前,进行了工艺试验。作者分别采用不同规范参数对各组试件堆焊,然后比较各组的硬度值结果,选择出较理想的工艺规范。

试验时,把试件分成 6 组,每组 3 块试板,试板尺寸为 120 mm×50 mm×6 mm;材质与叶轮相同,均为 Q235;耐磨合金粉块尺寸为 90 mm×30 mm× 3 mm;使用 AX1-500 直流弧焊机,采用直流正接(正接较反接熔深浅);用直径 10 mm 碳精棒作电极(电极直径大,可减小电流密度);特制加长焊把(减少碳弧对人体的烘烤)。每块试板上堆焊一块耐磨合金粉块,堆焊层硬度值按每组试件平均值记录。试验结果如表 2 所示。

表 2 工艺规范对堆焊层硬度的影响
试件组电流I/A电压 U/V焊接时间硬度(HRC)1280~30025~302′15″542300~32025~301′50″583330~35025~301′30″614360~38025~301′20″535400~42025~301′05″586430~45025~3058″56

作者认为:采用第 3 试件组的工艺规范效果最好。

为减少母材熔化量,应注意使堆焊电流减小、 电压降低、 堆焊速度加快;但堆焊电流过小,会使耐磨合金粉块不易熔化,导致堆焊速度减慢。欲使堆焊速度加快,又需加大堆焊电流。这一矛盾只有通过试验才能找到最佳组合。

焊工操作时需注意以下两点:

(1) 电弧摆动幅度尽量小,以刚超出粉块边缘为宜,但不可咬边;
(2) 采用坡度为 5°~10° 的下坡焊,使熔池流动方向与施焊方向一致。

3.1.2 控制叶轮变形量

堆焊后的叶轮,在验收时不仅需作静、动平衡试验,还需各表面的尺寸、 形状及位置满足偏差要求。由于堆焊会使叶轮受热不均匀,产生焊接应力,导致焊接变形等,故还需采取适当工艺措施,才能把叶轮变形控制在公差范围内[4,5]。

在堆焊时采取了以下工艺措施:

(1) 保证焊接顺序

在每一叶片上堆焊完一块粉块后,转动叶轮,在对称叶片相应位置,堆焊另一粉块,顺序如图 2 所示。如此循环往复,直至把各叶片堆焊完毕。以此顺序堆焊,可使叶轮前、 后盘均匀收缩,并可避免热应力过于集中,减少焊接变形。

(2) 锤击焊缝

叶轮变形是由于堆焊层在冷却过程中发生纵向、 横向收缩造成的。每堆焊完一粉块,用小锤轻击,延展堆焊层,可补偿部分收缩量,减少变形。

(3) 减少线能量

减小线能量能使叶片受到的热输入量减少,热应力变小。这与降低稀释率的要求是一致的。

3.2 结 果

采用上述工艺措施,对叶轮进行堆焊。焊后检查,叶轮变形量在技术要求范围内,并用便携式硬度计对各叶片堆焊层进行抽查,测得各点 HRC>56。
电厂运行表明,堆焊后的风机叶片寿命提高 4 倍左右,避免了叶轮在锅炉的一个大修期内,因叶片磨损而造成更换或修理,保证了机组的正常工作,取得了良好的经济效益和社会效益。

4 结 论

经实际生产考验,该堆焊技术是切实可行的,可以大大提高风机叶片的使用寿命,该技术适用于承受磨料磨损的其他工件。

丁京滨(1955-),男,高级工程师.从事专业:材料成型加工.
丁京滨(华北工学院 材料工程系,山西 太原 030051)
曹海燕(太原理工大学,山西 太原 030024)
张保富(太原一电厂,山西 太原 030024)

参考文献:
[1] [英]萨凯 A D 著;邵荷生译。金属磨损原理
[2] 周振丰。焊接冶金学(金属焊接性)
[3] 张清辉。堆焊焊条的耐磨性探讨
[4] 田锡唐。焊接结构
[5] 唐慕尧。平板堆焊时平面外变形的形态及产生机制(end)

AG8旗舰厅是水帘生产厂家|环保空调生产厂家|屋顶风机厂家|,AG8旗舰厅承接规划:猪场降温|车间降温|厂房降温|猪场通风|车间通风|厂房通风|屋顶排风机|屋顶排热|厂房通风降温|车间通风降温|通风换气排热降温工程|屋顶风机安装|负压风机安装|水帘安装|环保空调安装|通风设备安装|通风降温设备|通风系统安装案例|通风降温系统|屋顶通风机|屋顶排风系统
相关的主题文章:
推荐案例