产品列表
工程案例展示
风机选型与安装
厂房负压通风降温设计_全国煤矿知识竞赛试题库-机械分册矿山安全
201、为什么通风机不允许在“喘振”状态下运行?
202、为什么轴流式通风机风机轮毂要设置成流线体形状?
203、为什么轴流式通风机叶片要涂抹石墨油脂?
204、为什么要对备用通风机进行检查、维护保养?
205、为什么通风机安装初试机时轴承升温较快,但只要在60℃以下,就不要轻易停机?
206、为什么通风机反风时要进行风量测量?
207、为什么主通风机停止运转时,受停风影响的地点必须立即停止工作、切断电源?
208、为什么螺杆式压缩机可以多相混输?
209、为什么活塞式压缩机气缸内有活塞环?
210、为什么干式螺杆压缩机的气缸及排气侧端盖采用单层壁结构时,外壁顺气流方向要设有冷却翅片?
211、为什么活塞式压缩机各活塞环切口位置要相互错开?
212、为什么在螺杆式压缩机机体外表面、底座,甚至在吸排气通道内要合理布置加强垒?
213、为什么螺杆式压缩机无论使用何种形式的轴承,都应保证转子的一端固定、另一端能伸缩?
214、为什么压缩机风包要设释压阀?
215、为什么矿井必须及时填绘矿井排水系统图?
216、为什么中央泵房必须装设向外开的防火铁门?
217、为什么水泵或电机的地脚螺栓要定期紧固?
218、为什么对水泵轴向推力要及时消除?
219、为什么压力表和真空表应使用360°弯管与泵体连接?
220、为什么要求水泵的吸水高度不能过高?
221、为什么水泵要定期进行性能测试?
222、为什么在长距离带式输送机中使用自动拉紧装置?
223、为什么输送机要安装拉紧装置?
224、为什么带式输送机启动方式多采用软启动方式?
225、为什么钢丝绳牵引输送机输送带连接为对称槽牙结合?
226、为什么带式输送机上运时要装设防逆转装置?
227、为什么钢丝绳牵引输送机要装设机尾重锤限位保护?
228、为什么带式输送机必须安装清扫器?
229、为什么带式输送机要设置堆煤保护?
230、为什么刮板输送机必须使用拨链器?
231、为什么刮板输送机的安装要成直线?
232、为什么刮板输送机满载启动难?
233、为什么要对煤仓仓壁进行定期检查?
234、为什么起重机械要定期检验?
235、为什么使用千斤顶时要垫保险木?
236、为什么起吊滑轮槽直径要比钢丝绳直径稍大一些?
237、为什么千斤顶零件要及时清洗防锈?
238、为什么手拉葫芦起吊停留时,要将手拉链拴在起重链上?
239、为什么大直径薄壁件的吊装要采取临时加固措施?
240、为什么起重机要安装缓冲器?
241、为什么钢丝绳严禁过度弯曲?
242、为什么同时使用两台千斤顶时,其升降速度要基本一致?
243、为什么要求润滑油的黏温特性要好?
244、为什么液压油要具有良好的消泡性?
245、为什么液压支架选用水包油型乳化液?
246、为什么游标卡尺只适用于较低精度的测量?
247、为什么在钳台上安装台虎钳时必须使固定钳口位于钳台边缘?
248、为什么砂轮机安装时一定要找好平衡,并按规定牢固地灌好基础,预防振动?
249、为什么磨削操作时砂轮行程终点要设退刀槽?
250、为什么拉伸模具时,要在压边圈、凸模、凹模间加润滑剂?
251、为什么密封的空间不宜使用定位销?
252、为什么楔键和切向键只适用于低速、重载,对运转平稳性没有较高要求的场合?
253、为什么禁止在轴台阶处热装厚度较小、直径较大的盘形零件?
254、为什么轴上的迷宫密封应固定在轴承座上?
255、为什么螺纹连接要采取防松措施?
256、为什么平键装配不好,在运转中易发生“滚键”现象?
257、为什么摩擦面温度升高可加快零件磨损,并形成恶性循环?
258、为什么两摩擦面动作容易形成微动磨损?
259、为什么滑动轴承要求轴颈及轴瓦间隙接触良好?
260、为什么要严格控制钢中的含硫量?
261、为什么零件渗碳后必须进行热处理?
262、为什么零部件在表面淬火前,都进行正火或调质处理?
263、为什么要对加工工件进行划线?
264、为什么铬轴承钢对硫、磷含量限制极严?
265、为什么超高强钢中都含有硅?
266、为什么使用高速钢制造切削刀具?
267、为什么高速钢淬火后需及时回火?
268、为什么灰铸铁必须进行变质处理?
269、为什么球墨铸铁必须进行正火处理?
270、为什么球墨铸铁必须进行调质处理?
271、为什么要对塑料零件表面进行镀金属?
272、为什么浇注铸件时沿型腔周边均匀分布多个内浇口?
273、为什么在金属型铸造中金属型的型腔要涂耐火涂料?
274、为什么高合金钢锻造后应进行缓冷处理?
275、为什么与O型密封圈、油封接触的滑动面要保持光滑?
276、为什么在板料冲压拉伸过程中,压边圈、凸模、凹模间要加润滑剂?
277、为什么机床齿轮加工热处理工序中必须进行高频表面淬火?
278、为什么机械设备的重要零件要进行定期探伤?
279、为什么攻丝时必须向前、向后交替旋转?
280、为什么高压法兰盘的密封面作成凹凸式?
281、为什么錾削时后角要适宜,一般取5°~8°?
282、为什么水压机工作前应检查工作缸和回程缸的密封情况?
283、为什么当自由锻造水压机活动横梁落到限程套上时严禁加压?
284、为什么锻造过程中首锤必须轻打,然后再重击?
285、为什么在花盘上加工工件时转速不宜过高?
286、为什么要合理地选择车削用量?
287、为什么不能用螺母过度紧固安装件?
288、为什么供乙炔使用的器具禁止使用银、铜及含铜量高于70%的铜合金制品?
289、为什么在单极式氧气瓶减压器上装有与低压室相通的安全阀?
290、为什么乙炔瓶不能遭受剧烈的震动或撞击?
291、为什么在平对接焊时要从对缝一端预留30mm处施焊?
292、为什么气割在关闭切割氧的同时,火焰应迅速离开钢板表面?
293、为什么在手弧焊时应选择合适的焊接电流?
294、为什么焊接接头间隙较大时忌放金属填充物?
295、为什么焊条电弧焊的电弧长度不宜过大?
296、为什么在焊接前要对焊件进行严格清理?
297、为什么焊接部位两侧的厚度不能相差过大?
298、为什么纵向刚性较小长件两侧要同时焊接?
299、为什么要退火的焊接件不能制成封闭空间?
300、为什么离心式水泵泵体中有平衡盘?
荣获“2005年度工控及自动化领域优秀案例”有奖评选 三等奖 写作心得:
1.该论文选题为电厂改造中降耗所选的热门题目,降耗明显,但实际应用中还有部分难题没有解决。
2.改造成本很高。
3.论文分析透彻,效率数据不准确。
4.文章论述较规范。
1 概述
在火力发电厂中,风机和水泵是最主要的耗电设备,这些设备都是长期连续运行并常常处于变负荷运行状态,节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已被推到能源战略的首位。我厂#7机组额定容量为330MW,#7炉配有两台离心式一次风机,采用6kV、1600kW定速电机驱动运行,靠调节进口挡板开度来调整一次风量,以适应锅炉负荷变化。由于当初选型时风量裕量和压力裕量都比较大,改造前机组满负荷运行时一次风机电流约120A,挡板开度在60%左右,风压约8.9 kPa,节流损失较大。在此背景下,对#7炉一次风机进行变频控制改造,降低厂用电,为社会多提供一点电力就显得很有必要。
2 可行性分析
一次风机是火电厂燃煤锅炉直吹式制粉系统中的主要设备之一。根据锅炉运行工况,控制一次风机进口挡板开度调节风量大小。风机的流量-压力关系曲线如图1所示。在现场控制中,通常采用风机定速运行由进口挡板来控制风量。
当流量从Q0减小至Q1时,挡板开度减小使管网阻力由r0变为r1,受其节流作用压力H0变为H1,工作点由原来的A点移至B点。风机轴功率实际值(kW)可由公式: P =Q?H/(ηc?ηb)×10-3得出。其中,P、Q 、H 、ηc 、ηb 分别表示功率、流量、压力、风机效率、传动装置效率,直接传动为1。假设总效率(ηc?ηb)为1,则风机由A点移至B点工作时,电机节省的功耗为A Q0 O H0和B Q1 O H1的面积差。如果能采用调速手段改变风机的转速,那么当流量从Q0减小至Q1时,工作点将由原来的A点移至C点,风机的运行也更趋合理。在挡板全开,没有管网阻力的情况下,能耗势必降低。此时,电机节省的功耗为A Q0 O H0和C Q1 O H2的面积差;与挡板控制相比更为有效合理,既达到了改变风量的目的,又明显改善了风机运行工况,设备功耗也随之得到大大降低。据统计,#7机组2001~2002年有关指标及一次风机用电率见下表1。#7A、#7B一次风机及电机的技术参数见表2、表3。
在变频控制状况下运行,假定年运行小时为8000h,全年的平均负荷率为85%,风量约为60%,则一次风机的实际功率为30%×1600kW=480kW,2台一次风机年耗电量为:
480kW×8000h×2=7680000kWh
若选定的高压变频器容量为2400kVA,其综合效率为97%,则年损耗电量为:
2400kVA×0.9×0.03×8000×2=1036800 kWh
若室内配置10kW功率的空调,则年耗电10×8000=80000 kWh
全年节电:18303568×8000/8157-(7680000+1036800+80000)=9154474kWh
全年节约资金:2002年平均上网电价为0.32元/kWh,考虑到机组低负荷时节电多而电价低,设全年平均节电价0.20元/kWh,则全年节电效益为9154475kWh ×0.20/kWh=183万元;高压变频改造总投资约450万元,按上述工况运行,则大约需2.5年即可收回改造投资。因此,从经济性方面来说,一次风机高压变频改造是可行的。
从技术性方面来说,电机的调速控制可采用液力偶合器、电磁转差离合器、绕线式电动机转子串电阻调速、变极调速、变频控制等方式。在电力电子器件、变频和交流电机控制技术发展的基础上,国内外许多科研机构及大公司都倾注大量人力物力对中高压变频器进行了研究,高压变频器技术已趋于成熟,已成为目前电机调速技术的首选方案。
3 设备选型
目前,国内外高压变频器的生产厂家较多,主要有AB、罗宾康、ABB、西门子、三菱及国内的利德华福、天宠等等。各厂家所生产的高压变频器核心差别在于所选用的器件类型有所不同,相应地系统配备(变压器、电抗器、滤波装置等)都会有所差别,系统的可靠性、效率、谐波抑制效果、热损值、故障模式都会有所差别。不同的结构设计又会使得散热效果、环境要求、应用友好性和系统可维护性存在诸多差别。经过调研,2004年1月初,我厂邀请了浙大能源科技有限公司(罗克韦尔自动化AB)、保定中能自控技术有限公司(罗宾康)、北京利德华福技术有限公司、北京天宠电力技术有限公司等四个单位参加#7炉一次风机高压变频改造设备招标,经对各厂家的业绩以及所提供的技术方案进行认真的审查,并结合其报价进行综合比较,选定浙大能源科技有限公司(罗克韦尔自动化AB公司)。从技术角度看,AB 公司CSI-PWM电流源型变频器设计简单,可靠性高,应用已经有超过10年的历史,发展相对成熟。其免维护设计、大屏幕操作员界面和独有的自动整定功能使得系统的可靠性、可维护性、可用性方面较为突出,而且经过十几年的发展,该产品已正日益成为标准化产品。
4 设备主要技术性能
浙大能源科技有限公司中标的设备包括美国AB公司生产的PowerFlex7000变频器、保定天威顺达公司生产的干式整流变压器及广东明阳电器有限公司生产的旁路柜三部分,利用原有的6kV开关和电动机,系统框图如图2所示。
4.1PowerFlex7000中压变频器
AB高压变频器使用CSI-PWM技术,此技术已获得多于2,400,000匹马力现场安装运行记录的验证。罗克韦尔自动化/AB 是中/高压马达驱动装置的主要供应商,其产品电压等级可从2300V到6900V,功率高达16,000匹马力。CSI-PWM集电流源逆变功率结构及脉宽调制模式的优势于一体,创造了与传统六步方波电流源变频截然不同的产品。CIS-PWM使用很少功率器件,系统简单可靠。控制策略为带或不带测速反馈的直接矢量控制,其运行效果近似直流驱动装置,远远优于电压/频率定比变频器。主要特点如下:
*可靠性高:AB CSI-PWM高压变频器品采用6500V/1500A的高压SGCT器件,器件数量少,耐压及电流裕量大。变频器电压等级高,变频电流小,器件开关损耗少,设备安全可靠。
*输入波形好:AB CSI-PWM高压变频器的输入侧采用多脉冲(18脉冲) 整流器,厂房降温风机。18脉冲整流器可对17次以下的高次谐波进行有效的抑制,总体谐波畸变THD小于5%,不需谐波分析及外加滤波环节,可直接满足IEEE519-1992及国标的谐波抑制标准。
*输出波形好:AB CSI-PWM高压变频器无需增加任何选项,可直接输出完美的正弦电压和电流波形,不存在转矩脉动,无潜在共振问题。逆变时无dv/dt及di/dt的产生,谐波畸变THD小于5%,可直接拖带普通高压电动机,电机无额外温升,连接变频器及电机之间的距离可长达15km。
*四象限运行:AB CSI-PWM高压变频器固有能量回馈能力,可将降速工况(发电机运行状态)下负载反馈回的能量回送电网, 利用再生制动快速降低电机转速。电流型变频器具有电流内环,可利用强大的电流控制能力快速调节电机转速,特别适用需频繁快速调节的大惯性负载(风机)的控制。
*使用简单:AB CSI-PWM高压变频器使用大屏幕液晶显示的操作员终端, 中文界面。变频器的状态、输入输出变量、自诊断结果、故障报警均可显示在屏幕上, 信息量大。通过终端上的键盘,可轻松对变频器进行参数设置及工作方式的组态。
*维护方便:AB CSI-PWM高压变频器使用高集成度的SGCT器件及专利产品PowerCage机架,提高了系统模块化程度,友善的人机界面提供了所有的维护信息,从而保证了功率模块的更换时间小于5分钟。
*通讯能力强:AB CSI-PWM高压变频器总共提供16个数字量DI接口及16个数字量DO接口,根据用户需要,变频器可提供4-20mA或4-10V模拟量输入输出接口。变频器可配置各种数据串行通讯接口,提供开放的网络与厂级监控设备(DCS,PLC,值班室操作站)进行通讯。变频器内的变量、参数可传给其他监控设备进行记录、显示或参与控制。变频器通讯接口选项丰富,用户可根据需要选其中之一,如 :DeviceNet, Profibus,Modbus,Remote IO, ContrlNet及RS-232/485等。
4.2 干式整流变压器
干式整流变压器按照AB公司提供的技术规范,由保定天威顺达公司生产。变压器为6kV输入,2.1kV输出,18脉冲裂相,F 绝缘等级,允许温升为120K,实际温升小于90K,AN冷却。初级为三角形接法带4级调整,三组次级线圈:一组三角形接法,两组延边三角形接法。延边三角形接法产生-20°、0°、20°相移。
干式整流变压器起到跟系统隔离的作用,同时,其次级绕组进行必要的移相,以消除进线谐波。一组次级绕组输出一个三相中间交流,移相变压器的副边绕组共9组(每相3组),构成18脉波整流方式。这种多级移相叠加的整流方式可以大大改善输入电流波形。
4.3 旁路柜
旁路柜由广东明扬电气公司生产,内装K1、K2、K3三把高压隔离开关及相关的闭锁装置,实现电气和机械互锁。其作用为变频/工频运行方式的切换。变频运行方式时,K1断开,K2和K3闭合;工频运行方式时, K1闭合, K2及K3断开。满足电力系统五防要求,变频/工频相互闭锁, 操作手柄与高压柜门完全连锁。旁路柜操作与上级高压断路器DL联锁,合闸时,绝对不允许操作隔离开关,以防止出现带负荷拉闸现象,确保操作人员和设备的安全。本装置设计为当程序锁切至操作位置时跳上级高压断路器DL,同时旁路柜的K1、K3设有电磁锁,K1与K2、K3不能同时合;K2、K3操作有程序锁,合时先合K2,分时先分K3。
5 项目实施
5.1 基础施工
2台干式整流变安装在原四期增压泵房中,变频器柜及旁路柜安装在380V7A、7B段母线室内。2004年4月22日,开始拆除增压泵房中的软化水装置,开挖电缆沟,至5月15日完成浇筑变压器基础及变频器柜、旁路柜基础槽钢埋设等。
5.2 设备安装
本项目设备安装就位及电缆敷设由浙江华业公司承包,动力电缆由检修分场接线,控制电缆由自动化分场接线。5月17日,旁路柜、干式整流变运抵我厂,5月27日,2台干式变安装就位。5月28日即开始干式变侧动力电缆头制作。6月5日,变频器柜运抵我厂。6月7日变频器柜、旁路柜均安装就位。6月8日至10日,完成变频器柜、旁路柜侧动力电缆头制作,电缆预试等。6月11日至16日,完成控制电缆接线,#7A、7B一次风机6KV开关柜控制回路改造以及风道制作安装等。
5.3 装置的连锁保护
系统保留原有对电机的保护及其整定,以确保电机工频旁路时的启动和正常运行,同时实现工频旁路时对电机的保护和变频运行时对变频器的保护。
为了防止产生操作和事故情况下产生过电压等影响变频器的寿命的因素,变频器在控制系统受电自检正常后才能允许合6kV开关,具体实现在6kV开关的合闸回路中,6kV开关合上变频器充电后,自检正常发出准备好信号,才能启动变频器运行。此逻辑由热控实现,同样在正常或紧急停运时均先停变频器,然后断开高压开关,为此在综合保护出口和风机紧急跳闸出口控制回路中串有中间继电器,直接去关变频器,短延时去断开高压开关。
5.4 设备调试
6月15日,控制电源上电开始设备调试。主要进行了以下检查、测试项目:
a.装置外观检查。
b.硬件及跳线设置检查。
c.检查一次接线和控制回路接线正确。
d.绝缘检查,通风降温方案,用2500V摇表测一次回路对地绝缘电阻历时一分钟其值为120MΩ。
e.检查冷却风扇工作正常,风压值为3.1V,报警值2.7V,跳闸值2.1V。
f.核对变压器和变频器相位,发现#7A一次风机变频隔离变压器高压侧电缆接反,在旁路柜改接后正确。
g.电阻检查,验证SCR、SGCT功率器件和所有相关缓冲电路正常。
h.控制电源测试。因380V7A段电源低电压切换时会造成变频器停运,控制电源改接至#7机UPS。
i.门极测试、系统测试、18脉冲相序测试。
j.直流电源测试。
k.变频器参数整定。
l.变频器加中压,做运行前检查。
m.变频器带电机空载调试,转速从180~1500rpm时电流保持在20A,电压从520V升至5800V。
n.变频器带风机负载调试。
5.5 与西门子DCS系统的连接
一次风机变频控制与#7机西门子DCS的接口如下:首先,DCS上原一次风机的控制逻辑基本保持不变,控制对象改为一次风机的6KV动力电源,新增了两台变频器的控制和调节。为了防止运行人员误启动未满足条件的变频器,我们增加了变频器的启动条件,即当该变频器就地已准备好且其指令小于5%时才允许启动变频器。对于原一次风机的控制逻辑,其跳闸保护逻辑保持不变,也即保持其安全性不变,在机组发生异常情况下能快速切断一次风量及燃料,以确保机组的安全,在此基础上增加了启动条件:对应变频器的进、出线开关处于合闸状态或其旁路开关处于合闸状态,这样能有效防止运行人员未检查就地电源回路而匆忙合闸的弊端。
对于变频器的调节,我们主要解决了锅炉主控中所需风量和变频器转速之间的对应关系,将不同负荷所需的不同风量,转换成不同的对应转速。通过反复研究变频器厂家提供的资料及本厂锅炉的特性,我们设计了适合于本厂锅炉风量特性的变频调节PID逻辑,具体地说主要有:四层一次风量调节挡板的开度指令、锅炉主控的风量要求、两台变频器的指令平衡。通过以上参数的逻辑组态,实现一次风压力的可靠调节。通过机组启动后的多次扰动试验,将其PID参数进行了多次的优化,真正做到了一次风压力的稳定可靠调节。
和原一次风机进口调节挡板进行调节一次风量相比较,由于挡板存在热胀冷缩问题,在热态工况下,曾多次发生进口调节挡板卡涩,无法进行调节,并曾发生由此而使得执行机构的链杆拉断,从而导致风量无法调节,使得磨煤机无法启动,严重影响机组的出力。而变频改造后,进口调节挡板平时处于全开状态,无需参与调节,利用变频器的转速来进行调节其一次风量,调节特性平稳可靠,线性度好。
6 运行情况
机组负荷在130MW以下时,一套制粉系统投入运行;机组负荷在130~230 MW时,二套制粉系统投入运行;机组负荷在230~330MW以下时,三套制粉系统投入运行;在以上这三种工况下,维持一次风压在9.0kPa时,变频器的主要参数如下:
7 改造费用
我厂以台电生[2004]58号文向东南公司上报了“关于#7A、#7B一次风机变频改造费用的请示”,东南公司以东南发电生[2004]37号文批复了该项目,项目实际投资额近550万元。
8 效益分析
8.1 节电效益
#7A、#7B一次风机变频控制控制改造后,系统在经济性上有了很大的改善。根据运行提供的厂用电电量积数计算,#7A、#7B一次风机运行8个月来的平均功率为590kW,发电机平均功率为306MW,见下表。
再查阅2001~2003年统计年鉴有关数据,得知机组的平均功率为297MW,计算得#7A、#7B一次风机的平均功率为1150kW。#7A、#7B一次风机控制电源及室内空调总功率为15kW。2台一次风机变频改造后节省的功率为:2*1150-2*590-15=1105 kW
以年运行8000小时计算节电:1105*8000/10000=884万kWh
该项目总投资约为550万元,使用时间15年。
以0.20元/ kWh计算,年节电经济效益为:
884*0.20-550/15=140.13万元
税后利润:140.13*(1-33%)=93.89万元
8.2 其他效益
8.2.1 与原挡板调节相比,变频改造后加快了一次风量的调节速度,提高了机组的稳定性。
8.2.2 避免了电机启动时大电流冲击对电机的损坏,延长了电机和挡板的检修周期和寿命,减轻了维修工作量。
[结束语]
#7A、#7B一次风机变频器至今已投运8个月,性能稳定,运行情况良好。今后要加强设备点检及运行巡检,保持室内环境卫生,在室温高于30℃时开启室内空调机。做好日常维护工作,每季度对柜门滤网进行一次清灰,以避免其他厂曾出现的因超温而跳闸的现象。
1.该论文选题为电厂改造中降耗所选的热门题目,降耗明显,但实际应用中还有部分难题没有解决。
2.改造成本很高。
3.论文分析透彻,效率数据不准确。
4.文章论述较规范。
1 概述
在火力发电厂中,风机和水泵是最主要的耗电设备,这些设备都是长期连续运行并常常处于变负荷运行状态,节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已被推到能源战略的首位。我厂#7机组额定容量为330MW,#7炉配有两台离心式一次风机,采用6kV、1600kW定速电机驱动运行,靠调节进口挡板开度来调整一次风量,以适应锅炉负荷变化。由于当初选型时风量裕量和压力裕量都比较大,改造前机组满负荷运行时一次风机电流约120A,挡板开度在60%左右,风压约8.9 kPa,节流损失较大。在此背景下,对#7炉一次风机进行变频控制改造,降低厂用电,为社会多提供一点电力就显得很有必要。
2 可行性分析
一次风机是火电厂燃煤锅炉直吹式制粉系统中的主要设备之一。根据锅炉运行工况,控制一次风机进口挡板开度调节风量大小。风机的流量-压力关系曲线如图1所示。在现场控制中,通常采用风机定速运行由进口挡板来控制风量。
当流量从Q0减小至Q1时,挡板开度减小使管网阻力由r0变为r1,受其节流作用压力H0变为H1,工作点由原来的A点移至B点。风机轴功率实际值(kW)可由公式: P =Q?H/(ηc?ηb)×10-3得出。其中,P、Q 、H 、ηc 、ηb 分别表示功率、流量、压力、风机效率、传动装置效率,直接传动为1。假设总效率(ηc?ηb)为1,则风机由A点移至B点工作时,电机节省的功耗为A Q0 O H0和B Q1 O H1的面积差。如果能采用调速手段改变风机的转速,那么当流量从Q0减小至Q1时,工作点将由原来的A点移至C点,风机的运行也更趋合理。在挡板全开,没有管网阻力的情况下,能耗势必降低。此时,电机节省的功耗为A Q0 O H0和C Q1 O H2的面积差;与挡板控制相比更为有效合理,既达到了改变风量的目的,又明显改善了风机运行工况,设备功耗也随之得到大大降低。据统计,#7机组2001~2002年有关指标及一次风机用电率见下表1。#7A、#7B一次风机及电机的技术参数见表2、表3。
在变频控制状况下运行,假定年运行小时为8000h,全年的平均负荷率为85%,风量约为60%,则一次风机的实际功率为30%×1600kW=480kW,2台一次风机年耗电量为:
480kW×8000h×2=7680000kWh
若选定的高压变频器容量为2400kVA,其综合效率为97%,则年损耗电量为:
2400kVA×0.9×0.03×8000×2=1036800 kWh
若室内配置10kW功率的空调,则年耗电10×8000=80000 kWh
全年节电:18303568×8000/8157-(7680000+1036800+80000)=9154474kWh
全年节约资金:2002年平均上网电价为0.32元/kWh,考虑到机组低负荷时节电多而电价低,设全年平均节电价0.20元/kWh,则全年节电效益为9154475kWh ×0.20/kWh=183万元;高压变频改造总投资约450万元,按上述工况运行,则大约需2.5年即可收回改造投资。因此,从经济性方面来说,一次风机高压变频改造是可行的。
从技术性方面来说,电机的调速控制可采用液力偶合器、电磁转差离合器、绕线式电动机转子串电阻调速、变极调速、变频控制等方式。在电力电子器件、变频和交流电机控制技术发展的基础上,国内外许多科研机构及大公司都倾注大量人力物力对中高压变频器进行了研究,高压变频器技术已趋于成熟,已成为目前电机调速技术的首选方案。
3 设备选型
目前,国内外高压变频器的生产厂家较多,主要有AB、罗宾康、ABB、西门子、三菱及国内的利德华福、天宠等等。各厂家所生产的高压变频器核心差别在于所选用的器件类型有所不同,相应地系统配备(变压器、电抗器、滤波装置等)都会有所差别,系统的可靠性、效率、谐波抑制效果、热损值、故障模式都会有所差别。不同的结构设计又会使得散热效果、环境要求、应用友好性和系统可维护性存在诸多差别。经过调研,2004年1月初,我厂邀请了浙大能源科技有限公司(罗克韦尔自动化AB)、保定中能自控技术有限公司(罗宾康)、北京利德华福技术有限公司、北京天宠电力技术有限公司等四个单位参加#7炉一次风机高压变频改造设备招标,经对各厂家的业绩以及所提供的技术方案进行认真的审查,并结合其报价进行综合比较,选定浙大能源科技有限公司(罗克韦尔自动化AB公司)。从技术角度看,AB 公司CSI-PWM电流源型变频器设计简单,可靠性高,应用已经有超过10年的历史,发展相对成熟。其免维护设计、大屏幕操作员界面和独有的自动整定功能使得系统的可靠性、可维护性、可用性方面较为突出,而且经过十几年的发展,该产品已正日益成为标准化产品。
4 设备主要技术性能
浙大能源科技有限公司中标的设备包括美国AB公司生产的PowerFlex7000变频器、保定天威顺达公司生产的干式整流变压器及广东明阳电器有限公司生产的旁路柜三部分,利用原有的6kV开关和电动机,系统框图如图2所示。
4.1PowerFlex7000中压变频器
AB高压变频器使用CSI-PWM技术,此技术已获得多于2,400,000匹马力现场安装运行记录的验证。罗克韦尔自动化/AB 是中/高压马达驱动装置的主要供应商,其产品电压等级可从2300V到6900V,功率高达16,000匹马力。CSI-PWM集电流源逆变功率结构及脉宽调制模式的优势于一体,创造了与传统六步方波电流源变频截然不同的产品。CIS-PWM使用很少功率器件,系统简单可靠。控制策略为带或不带测速反馈的直接矢量控制,其运行效果近似直流驱动装置,远远优于电压/频率定比变频器。主要特点如下:
*可靠性高:AB CSI-PWM高压变频器品采用6500V/1500A的高压SGCT器件,器件数量少,耐压及电流裕量大。变频器电压等级高,变频电流小,器件开关损耗少,设备安全可靠。
*输入波形好:AB CSI-PWM高压变频器的输入侧采用多脉冲(18脉冲) 整流器,厂房降温风机。18脉冲整流器可对17次以下的高次谐波进行有效的抑制,总体谐波畸变THD小于5%,不需谐波分析及外加滤波环节,可直接满足IEEE519-1992及国标的谐波抑制标准。
*输出波形好:AB CSI-PWM高压变频器无需增加任何选项,可直接输出完美的正弦电压和电流波形,不存在转矩脉动,无潜在共振问题。逆变时无dv/dt及di/dt的产生,谐波畸变THD小于5%,可直接拖带普通高压电动机,电机无额外温升,连接变频器及电机之间的距离可长达15km。
*四象限运行:AB CSI-PWM高压变频器固有能量回馈能力,可将降速工况(发电机运行状态)下负载反馈回的能量回送电网, 利用再生制动快速降低电机转速。电流型变频器具有电流内环,可利用强大的电流控制能力快速调节电机转速,特别适用需频繁快速调节的大惯性负载(风机)的控制。
*使用简单:AB CSI-PWM高压变频器使用大屏幕液晶显示的操作员终端, 中文界面。变频器的状态、输入输出变量、自诊断结果、故障报警均可显示在屏幕上, 信息量大。通过终端上的键盘,可轻松对变频器进行参数设置及工作方式的组态。
*维护方便:AB CSI-PWM高压变频器使用高集成度的SGCT器件及专利产品PowerCage机架,提高了系统模块化程度,友善的人机界面提供了所有的维护信息,从而保证了功率模块的更换时间小于5分钟。
*通讯能力强:AB CSI-PWM高压变频器总共提供16个数字量DI接口及16个数字量DO接口,根据用户需要,变频器可提供4-20mA或4-10V模拟量输入输出接口。变频器可配置各种数据串行通讯接口,提供开放的网络与厂级监控设备(DCS,PLC,值班室操作站)进行通讯。变频器内的变量、参数可传给其他监控设备进行记录、显示或参与控制。变频器通讯接口选项丰富,用户可根据需要选其中之一,如 :DeviceNet, Profibus,Modbus,Remote IO, ContrlNet及RS-232/485等。
4.2 干式整流变压器
干式整流变压器按照AB公司提供的技术规范,由保定天威顺达公司生产。变压器为6kV输入,2.1kV输出,18脉冲裂相,F 绝缘等级,允许温升为120K,实际温升小于90K,AN冷却。初级为三角形接法带4级调整,三组次级线圈:一组三角形接法,两组延边三角形接法。延边三角形接法产生-20°、0°、20°相移。
干式整流变压器起到跟系统隔离的作用,同时,其次级绕组进行必要的移相,以消除进线谐波。一组次级绕组输出一个三相中间交流,移相变压器的副边绕组共9组(每相3组),构成18脉波整流方式。这种多级移相叠加的整流方式可以大大改善输入电流波形。
4.3 旁路柜
旁路柜由广东明扬电气公司生产,内装K1、K2、K3三把高压隔离开关及相关的闭锁装置,实现电气和机械互锁。其作用为变频/工频运行方式的切换。变频运行方式时,K1断开,K2和K3闭合;工频运行方式时, K1闭合, K2及K3断开。满足电力系统五防要求,变频/工频相互闭锁, 操作手柄与高压柜门完全连锁。旁路柜操作与上级高压断路器DL联锁,合闸时,绝对不允许操作隔离开关,以防止出现带负荷拉闸现象,确保操作人员和设备的安全。本装置设计为当程序锁切至操作位置时跳上级高压断路器DL,同时旁路柜的K1、K3设有电磁锁,K1与K2、K3不能同时合;K2、K3操作有程序锁,合时先合K2,分时先分K3。
5 项目实施
5.1 基础施工
2台干式整流变安装在原四期增压泵房中,变频器柜及旁路柜安装在380V7A、7B段母线室内。2004年4月22日,开始拆除增压泵房中的软化水装置,开挖电缆沟,至5月15日完成浇筑变压器基础及变频器柜、旁路柜基础槽钢埋设等。
5.2 设备安装
本项目设备安装就位及电缆敷设由浙江华业公司承包,动力电缆由检修分场接线,控制电缆由自动化分场接线。5月17日,旁路柜、干式整流变运抵我厂,5月27日,2台干式变安装就位。5月28日即开始干式变侧动力电缆头制作。6月5日,变频器柜运抵我厂。6月7日变频器柜、旁路柜均安装就位。6月8日至10日,完成变频器柜、旁路柜侧动力电缆头制作,电缆预试等。6月11日至16日,完成控制电缆接线,#7A、7B一次风机6KV开关柜控制回路改造以及风道制作安装等。
5.3 装置的连锁保护
系统保留原有对电机的保护及其整定,以确保电机工频旁路时的启动和正常运行,同时实现工频旁路时对电机的保护和变频运行时对变频器的保护。
为了防止产生操作和事故情况下产生过电压等影响变频器的寿命的因素,变频器在控制系统受电自检正常后才能允许合6kV开关,具体实现在6kV开关的合闸回路中,6kV开关合上变频器充电后,自检正常发出准备好信号,才能启动变频器运行。此逻辑由热控实现,同样在正常或紧急停运时均先停变频器,然后断开高压开关,为此在综合保护出口和风机紧急跳闸出口控制回路中串有中间继电器,直接去关变频器,短延时去断开高压开关。
5.4 设备调试
6月15日,控制电源上电开始设备调试。主要进行了以下检查、测试项目:
a.装置外观检查。
b.硬件及跳线设置检查。
c.检查一次接线和控制回路接线正确。
d.绝缘检查,通风降温方案,用2500V摇表测一次回路对地绝缘电阻历时一分钟其值为120MΩ。
e.检查冷却风扇工作正常,风压值为3.1V,报警值2.7V,跳闸值2.1V。
f.核对变压器和变频器相位,发现#7A一次风机变频隔离变压器高压侧电缆接反,在旁路柜改接后正确。
g.电阻检查,验证SCR、SGCT功率器件和所有相关缓冲电路正常。
h.控制电源测试。因380V7A段电源低电压切换时会造成变频器停运,控制电源改接至#7机UPS。
i.门极测试、系统测试、18脉冲相序测试。
j.直流电源测试。
k.变频器参数整定。
l.变频器加中压,做运行前检查。
m.变频器带电机空载调试,转速从180~1500rpm时电流保持在20A,电压从520V升至5800V。
n.变频器带风机负载调试。
5.5 与西门子DCS系统的连接
一次风机变频控制与#7机西门子DCS的接口如下:首先,DCS上原一次风机的控制逻辑基本保持不变,控制对象改为一次风机的6KV动力电源,新增了两台变频器的控制和调节。为了防止运行人员误启动未满足条件的变频器,我们增加了变频器的启动条件,即当该变频器就地已准备好且其指令小于5%时才允许启动变频器。对于原一次风机的控制逻辑,其跳闸保护逻辑保持不变,也即保持其安全性不变,在机组发生异常情况下能快速切断一次风量及燃料,以确保机组的安全,在此基础上增加了启动条件:对应变频器的进、出线开关处于合闸状态或其旁路开关处于合闸状态,这样能有效防止运行人员未检查就地电源回路而匆忙合闸的弊端。
对于变频器的调节,我们主要解决了锅炉主控中所需风量和变频器转速之间的对应关系,将不同负荷所需的不同风量,转换成不同的对应转速。通过反复研究变频器厂家提供的资料及本厂锅炉的特性,我们设计了适合于本厂锅炉风量特性的变频调节PID逻辑,具体地说主要有:四层一次风量调节挡板的开度指令、锅炉主控的风量要求、两台变频器的指令平衡。通过以上参数的逻辑组态,实现一次风压力的可靠调节。通过机组启动后的多次扰动试验,将其PID参数进行了多次的优化,真正做到了一次风压力的稳定可靠调节。
和原一次风机进口调节挡板进行调节一次风量相比较,由于挡板存在热胀冷缩问题,在热态工况下,曾多次发生进口调节挡板卡涩,无法进行调节,并曾发生由此而使得执行机构的链杆拉断,从而导致风量无法调节,使得磨煤机无法启动,严重影响机组的出力。而变频改造后,进口调节挡板平时处于全开状态,无需参与调节,利用变频器的转速来进行调节其一次风量,调节特性平稳可靠,线性度好。
6 运行情况
机组负荷在130MW以下时,一套制粉系统投入运行;机组负荷在130~230 MW时,二套制粉系统投入运行;机组负荷在230~330MW以下时,三套制粉系统投入运行;在以上这三种工况下,维持一次风压在9.0kPa时,变频器的主要参数如下:
7 改造费用
我厂以台电生[2004]58号文向东南公司上报了“关于#7A、#7B一次风机变频改造费用的请示”,东南公司以东南发电生[2004]37号文批复了该项目,项目实际投资额近550万元。
8 效益分析
8.1 节电效益
#7A、#7B一次风机变频控制控制改造后,系统在经济性上有了很大的改善。根据运行提供的厂用电电量积数计算,#7A、#7B一次风机运行8个月来的平均功率为590kW,发电机平均功率为306MW,见下表。
再查阅2001~2003年统计年鉴有关数据,得知机组的平均功率为297MW,计算得#7A、#7B一次风机的平均功率为1150kW。#7A、#7B一次风机控制电源及室内空调总功率为15kW。2台一次风机变频改造后节省的功率为:2*1150-2*590-15=1105 kW
以年运行8000小时计算节电:1105*8000/10000=884万kWh
该项目总投资约为550万元,使用时间15年。
以0.20元/ kWh计算,年节电经济效益为:
884*0.20-550/15=140.13万元
税后利润:140.13*(1-33%)=93.89万元
8.2 其他效益
8.2.1 与原挡板调节相比,变频改造后加快了一次风量的调节速度,提高了机组的稳定性。
8.2.2 避免了电机启动时大电流冲击对电机的损坏,延长了电机和挡板的检修周期和寿命,减轻了维修工作量。
[结束语]
#7A、#7B一次风机变频器至今已投运8个月,性能稳定,运行情况良好。今后要加强设备点检及运行巡检,保持室内环境卫生,在室温高于30℃时开启室内空调机。做好日常维护工作,每季度对柜门滤网进行一次清灰,以避免其他厂曾出现的因超温而跳闸的现象。
高压变频器在生料磨循环风机上的应用 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
摘要:河南省同力鹤壁水泥有限公司成立于1995年,现有2条日产2500吨水泥熟料新型干法生产线,年产水泥200万吨。2006年12月,公司对二期生料磨循环风机进行高压变频改造,取得了良好的经济效益与社会效益。 关键词:生料磨循环风机、高压变频器 节能 河南省同力鹤壁水泥有限公司成立于1995年,现有2条日产2500吨水泥熟料新型干法生产线,年产水泥200万吨。公司留意挖掘自身潜力,强化节能意识,并付诸于实施,于2006年12月就对二期生料磨循环风机进行高压变频改造,取得了良好的经济效益与社会效益。 一、生料磨循环风机改高压变频器拖动的必要性 我公司二期生料磨循环风机为沈阳电机股份有限公司生产的转子绕线异步电机(YRKK630-6,10kV,1000kW)拖动,原有的运行方式为电机全速运行,启动方式是转子串水电阻启动,启动结束后自动短接转子滑环,电机全速运行,这样的运行方式存在如下弊端: 1.风机调节反应滞后,调节速度慢,调节精度不高。 依靠风门调节执行器来调节风门开度,受机械部分限制调节速度有限,调节精度亦受影响,往往对现场的风量控制不是很到位。并且,随使用年限增加,挡板开度指示出现偏差,造成调节的误差增加。 2.风门调节浪费电能,不科学,不经济。 电机额定电流为70A,而电机实际运行电流均匀为60A左右,阀门开启仅为70%左右,采用风门调节,人为改变了风道的阻力曲线,大量的能源白白浪费在风门上。 3.电机全速运行受到考验,电机和风机维护周期短。 因电机全速运行,电机轴瓦和风机等机械部分磨损较快,转子滑环的碳刷磨损也较快,更换周期短。 二、调速方式的选择 大功率高压异步电动机的主要调速方式有以下几种:串级调速、内反馈斩波调速、液力耦合器调速及变频调速等。高压变频调速较其他调速方式有以下无法相比的优点: 1.变频器采用液晶显示数字界面,可随时显示电压、电流、频率和电机转速,可以非常直观地显示电机在任何时间的实时状态和故障信息。 2.精确的频率分辨率和很高的调速精度,完全可以满足各种生产工艺工况的需要。 3.具有电力电子保护和产业电气保护功能,保证变频器和电机在正常运行和故障时安全可靠。 4.电机可实现软启动、软制动;启动电流小,减轻了对机械负载的冲击;电机启动的时间连续可调,减少了对电网的影响。 5.具有就地和远程操纵功能。 6.减少配件损耗,延长设备使用寿命,进步劳动生产效率。 当时,通过对国内外厂家的比较,我公司选用了北京利德华福电气技术有限公司生产的HARSVERT-A10/090高压变频器。 三、改造项目具体实施方案和过程 根据现场的实际情况,旁路柜采用了一拖一自动方案,此结构是自动旁路的典型方案。基本原理是:使用了3个高压隔离开关(GS1、GS2和GS3)和3个高压真空接触器(KM1、KM2和KM3)组成(如图1,GF为原高压开关柜内的断路器)要求KM1和KM2不能与KM3同时闭合,在电气控制回路和PLC程序上实现互锁,变频正常启动时,KM1先闭合,KM2后闭合,正常停车时KM2先断开,KM1后断开;当变频运行期间变频器报重故障时自动投进旁路运行(参数可设),KM1和KM2同时断开后KM3闭合,转进工频运行;变频器出现故障短时不可修复,直接工频启动时,手动合上KM3即可。 现场原有的水电阻装置继续保存,变频启动时,取KM1的合闸信号直接短接电机转子滑环,由高压变频器对电机实现软启动;变频运行报重故障时自动旁路,KM1和KM2断开,水电阻短接接触器断开,KM3合闸信号启动水电阻装置正常投进运行(仅启动,启动完毕后仍短接转子);当工频直接启动时,KM3合闸信号直接启动水电阻实现软启动功能。KM3合闸信号(旁路运行信号)直接进DCS,提示中控进行阀门调节风量。
现场设备铭牌如下:
四、改造效果 1.节能效果相当明显,经济效益明显。 我公司二期生料磨循环风机变频改造后,取得了明显的节能效果,改造前风机风门的开启经常在70%左右,电机全速运行;变频改造后,风机变速运行,风门全开。因现场工况变化不是很大,变频调速系统经常运行在42Hz左右,与调节档板时的消耗功率大大减少,节电效果与经济效益明显,变频改造前后,电机的运行数据如下表所示:
2.改善工艺。 改造前及改造后现场工况列表如下:
参考上述表格,可以看出: 二期生料循环风机变频改造后,取得的间接效果也十分明显,由于变频调速系统经常运行在42Hz(生产时),电机及风机转速降低,电机及风机的轴温降低,噪音和振动降低,电机碳刷消耗量减少,整体维护周期大大延长。操纵职员在DCS侧通过监控界面很方便的调节电机的运行频率,调节及时,调节精度高,由于电机变频改造后转速降低,输出功率大大降低,电机的温升也没有升高。 五、总结 由此可见,利德华福生产的该套HARSVERT-A10/090高压变频调速系统在我公司二期生料循环风机上取得了良好的使用效果,该设备安装方便,运行稳定可靠,维护量小(定期清滤网和紧线),在迄今二年多的运行过程中,故障率很低,系统运行安全、稳定、可靠,节能效果明显,为我公司的正常生产和节能降耗做出了巨大贡献。 我作为电气维护治理职员,对利德华福高压变频器的使用有以下亲身体会: 1.系统运行安全、稳定、高效。 2.全中文界面显示,参数设置简单明确,方便操纵。 3.适应国内电压不稳的国情,在其可靠性、安全性等方面具有独到的上风。 4.内置PLC,易于改变控制逻辑关系,适应多变的现场需要。 5.监控、保护、记录查询等功能实用、可靠、方便。 6.该公司非常重视售前、售中和售后服务工作,有着一支练习有素、专业技术能力强、服务及时的技术支持工程师队伍,能随时响应并满足用户的各种要求,客户24小时可以跟技术服务职员取得联系,车间通风设备,获得技术支持和帮助。 7.该公司的技术研发能力强,不断完善产品质量和进步产品稳定性,产品升级和改进后主动为客户提供免费升级服务(一年内)。 8.该公司经常主动地对客户定期进行产品质量询访和跟踪,每半年主动为客户进行一次免费设备巡查,协助客户搞好设备维护。 9.处理故障及时、有效,售后技术服务职员业务素质高,态度好,能急客户所急,想客户所想,替用户考虑周全,服务周到,以用户的满足为目标搞好技术支持保障工作。 |
风机水泵节能改造简介风机水泵节能改造简介 |
|
风机和水泵是目前产业现场中应用较多的设备,而且电机功率较大。在我国,电能最大的用户是电机,约占总耗的50%。其中风机水泵耗电占全部电能的30%,传统的风机水泵的风量、水流量的调节是依靠风门、阀来调节,当风量、水量的需要增加时,风门、阀门开度增加。该种调节方式简单易行,但它是以增加管网损耗,耗费大量能源在风门、阀门上为代价的。在通常设计中,用户配用电机的设计容量都要比实际高出很多。也就是大马拉小车现象,造成能量的极大浪费。近年来,随着电力、电子技术的发展,变频技术越来越成熟,风机、泵类设备的变频改造已得到广大客户的认同。
一、风机、泵类高速的节能原理
由流体力学可知:风量Q与转速的一次方成正比例,压力H与转速的平方成正比,功率P与转速的立方成正比。 即: Q=K1n H=K2n2 P=K3n3 由上面公式可知,假如风机的效率一定,当要求调节水量下降时,转速可成正比例下降,此时风机的轴输出功率是成立方关系下降的。 根据水泵类的特性曲线与水阻特性曲线也可明显看出风机水泵的节能效果。上图为风机水泵调速节能原理图,图中为H/F(Q)曲线,其与风阻特性曲线R1交于A点,对应风量为Q1,则此时轴输出功率正比于面积SAH2OQ1,当欲使风量由Q1减少到Q2,第一种办法即传统办法用挡板或阀门,则新的风阻水阻特性曲线相交于B点,此时轴输出功率正比于面积SBH1OQ2,假如采用变频调速,将水泵或风机转速减低,对应H/Q曲线与R1相交于C点。此时轴输出功率正比于面积SCH3OQ2,假如所需风量减少20%,则相应电机转速降低20%,实际转速为80%,则(0.8)3≈51%,节能达50%左右。 二、结论 使用交流变频调速器对风机水泵进行改造,操纵简单、方便。节能效果非常明显,并且能实现高度自动化。例如:空调中风机进行PID温度控制,空气压缩机的恒压供气,智能大楼中的恒压供水等,都可以达到较好的效果。 |
AG8旗舰厅负压风机-大北农集团巨农种猪示范基地风机设备水帘设备供应商!台湾九龙湾负压风机配件供应商! 主要产品猪舍通风降温,猪棚通风降温,猪场通风降温,猪舍风机,养殖地沟风机,猪舍地沟风机,猪舍多少台风机,厂房多少台风机,车间多少台风机,猪舍什么风机好,厂房什么风机好,车间什么风机好,多少平方水帘,多大的风机,哪个型号的风机 相关的主题文章:
- 负压风机厂家直供_中国产“五金巨头”开始浮出水面地热空调将在
- 通风降温设备生产厂_蓝昊玻璃钢负压风机与常见镀锌板负压风机区
推荐案例