Warning: mkdir(): No space left on device in /www/wwwroot/nxwwmm.com/func.php on line 251

Warning: file_put_contents(./cachefile_yuan/mpoaje.com/cache/11/3930f/a00de.html): failed to open stream: No such file or directory in /www/wwwroot/nxwwmm.com/func.php on line 239
厂房负压风机_离心通风机叶轮的设计方法简述风机购买后应如何安_负压风机生产厂家|通风降温排热除尘设备|工厂房车间养殖畜牧通风降温工程设计|通风设备厂家|降温设备厂家|水帘厂家|环保空调厂家|AG8旗舰厅通风降温系统|厂房降温_车间降温_猪场降温_厂房通风_车间通风_猪场通风_排风散热_屋顶通风降温

  • AG8旗舰厅

    工程案例展示
    AG8旗舰厅

    AG8旗舰厅通风降温系统

    电 话:0579-81328720> 传 真:0579-81328720
    联系人
    售前咨询:13388660553
    技术指导:18858318765
    售后服务:15068216608
    地址:上海 金华 嘉兴 襄阳

    厂房负压风机_离心通风机叶轮的设计方法简述风机购买后应如何安

    离心式通风机作为流体机械的一种重要类型,广泛应用于国民经济各个部门, 是主要的耗能机械之一,也是节能减排的一个重要研究领域。研究过程表明:提高离心通风机叶轮设计水平,是提高离心通风机效率、扩大其工况范围的关键。本文将从离心通风机叶轮的设计和利用边界层控制技术提高离心通风机叶轮性能这两个方面,对近年来提出的提高离心通风机性能的方法和途径的研究进行归纳分析。
    离心通风机叶轮的设计方法简述
    如何设计高效、工艺简单的离心通风机一直是科研人员研究的主要问题,设计高效叶轮叶片是解决这一问题的主要途径。
    叶轮是风机的核心气动部件,叶轮内部流动的好坏直接决定着整机的性能和效率。因此国内外学者为了了解叶轮内部的真实流动状况,改进叶轮设计以提高叶轮的性能和效率,作了大量的工作。
    为了设计出高效的离心叶轮, 科研工作者们从各种角度来研究气体在叶轮内的流动规律, 寻求最佳的叶轮设计方法。最早使用的是一元设计方法[1],通过大量的统计数据和一定的理论分析,获得离心通风机各个关键截面气动和结构参数的选择规律。在一元方法使用的初期,可以简单地通过对风机各个关键截面的平均速度计算,确定离心叶轮和蜗壳的关键参数,而且一般叶片型线采用简单的单圆弧成型。这种方法非常粗糙,设计的风机性能需要设计人员有非常丰富的经验,有时可以获得性能不错的风机,但是,大部分情况下,设计的通风机效率低下。为了改进,研究人员对叶轮轮盖的子午面型线采用过流断面的概念进行设计[2-3] ,如此设计出来的离心叶轮的轮盖为两段或多段圆弧,这种方法设计的叶轮虽然比前一种一元设计方法效率略有提高,但是该方法设计的风机轮盖加工难度大,成本高,很难用于大型风机和非标风机的生产。另外一个重要方面就是改进叶片设计,对于二元叶片的改进方法主要为采用等减速方法和等扩张度方法等[4],还有采用给定叶轮内相对速度W沿平均流线m分布[5]的方法。等减速方法从损失的角度考虑,气流相对速度在叶轮流道内的流动过程中以同一速率均匀变化,能减少流动损失,进而提高叶轮效率;等扩张度方法是为了避免局部
    地区过大的扩张角而提出的方法。给定的叶轮内相对速度W沿平均流线m的分布是通过控制相对平均流速沿流线m的变化规律,通过简单几何关系,就可以得到叶片型线沿半径的分布。以上方法虽然简单,但也需要比较复杂的数值计算。
    随着数值计算以及电子计算机的高速发展,可以采用更加复杂的方法设计离心通风机叶片。苗水淼等运用“全可控涡”概念[6],建立了一种采用流线曲率法在叶轮流道的子午面上进行叶轮设计的设计方法,该方法目前已经推广至工程界,并已经取得了显著效果[7]。但是此方法中决定叶轮设计成功与否的关键,即如何给出子午流面上叶片涡的合理分布。这一方面需要具有较丰富的设计经验;另一方面也需要在设计过程中对设计结果不断改进以符合叶片涡的分布规律,以期最终设计出高效率的叶轮机械。对于整个子午面上可控涡的确定,可以采用rCu沿轮盘、轮盖的给定,可以通过线性插值的方法确定rCu在整个子午面上的分布[8-9],也可以通过经验公式确定可控涡的分布[10],也有利用给定叶片载荷法[11]设计离心通风机的叶片。以上方法都是采用流线曲率法,设计出的是三元离心叶片,对于二元离心通风机叶片还不能直接应用。但数值计算显示,离心通风机的二元叶片内部流动的结构是更复杂的三维流动。因此,如何利用三维流场计算方法进一步来设计高效二元离心叶轮是提高离心通风机设计技术的关键。
    随着计算技术的不断发展,三维粘性流场计算获得了非常大的进步,据此,有一些研究者提出了近似模型方法。该方法是针对在工程中完全采用随机类优化方法寻优时计算量过大的问题,应用统计学的方法,提出的一种计算量小、在一定程度上可以保证设计准确性的方法。在近似模型方法应用于叶轮机械气动优化设计方面,国内外研究者们已经做了相当一部分工作[12-14] ,其中以响应面和人工神经网络方法应用居多。如何有效地将近似模型方法应用于多学科、多工况的优化问题,并用较少的设计参数覆盖更大的实际设计空间,是一个重要的课题。
    2007年,席光等提出了近似模型方法在叶轮机械气动优化设计中的应用[15]。近似模型的建立过程主要包括: (1)选择试验设计方法并布置样本点,在样本点上产生设计变量和设计目标对应的样本数据;(2)选择模型函数来表示上面的样本数据;(3)选择某种方法,用上面的模型函数拟合样本数据,建立近似模型。以上每一步选择不同的方法或者模型,就相应产生了各种不同的近似模型方法。该方法不仅有利于更准确地洞察设计量和设计目标之间的关系,而且用近似模型来取代计算费时的评估目标函数的计算分析程序,可以为工程优化设计提供快速的空间探测分析工具,降低了计算成本。在气动优化设计过程中,用该模型取代耗时的高精度的计算流体动力学分析 ,可以加速设计过程 ,降低设计成本。基于统计学理论提出的近似模型方法,有效地平衡了基于计算流体动力学分析的叶轮机械气动优化设计中计算成本和计算精度这一对矛盾。该近似模型方法在试验设计方法基础上,将响应面方法、Kriging方法和人工神经网络技术成功地应用于叶轮机械部件的优化设计中,在离心压缩机叶片扩压器、叶轮和混流泵叶轮设计等问题中得到了成功应用,展示了广阔的工程应用前景。目前,席光课题组已经建立了离心压缩机部件及水泵叶轮的优化设计系统,并在工程设计中发挥了重要作用。
    2008年,李景银等在近似模型方法的基础上提出了控制离心叶轮流道的相对平均速度优化设计方法[16],将近似模型方法较早的应用于离心通风机叶轮设计。该方法通过给出流道内气流平均速度沿平均流线的设计分布,设计出一组离心风机参数,根据正交性准则,在充分考虑影响叶轮效率因素的基础上,采用正交优化方法进行优化组合,并结合基于流体动力学分析软件的数值模拟,最终成功开发了与全国推广产品9-19同样设计参数和叶轮大小的离心通风机模型,计算全压效率提高了4%以上。该方法简单易行、合理可靠,得到了很高的设计开发效率。
    随着理论研究的不断深入和设计方法的不断提高,对于降低叶轮气动损失、改善叶轮气动性能的措施,提高离心风机效率的研究,将会更好的应用于工程实际中。
    改善离心通风机内叶轮流动的方法
    叶轮是离心风机的心脏,离心风机叶轮的内部流动是一个非常复杂的逆压过程,叶轮的高速旋转和叶道复杂几何形状都使其内部流动变成了非常复杂的三维湍流流动。由于压差,叶片通道内一般会存在叶片压力面向吸力面的二次流动,同时由于气流90°转弯,导致轮盘压力大于轮盖压力也形成了二次流,这一般会导致叶轮的轮盖和叶片吸力面区域出现低速区甚至分离,形成射流—尾迹结构[17]。由于射流—尾迹结构的存在,导致离心风机效率下降,噪声增大。为了改善离心叶轮内部的流动状况,提高叶轮效率,一个重要的研究方向就是采用边界层控制方式提高离心叶轮性能,这也是近年的热点研究方向。
    2007年,刘小民等人采用边界层主动控制技术在压缩机进气段选择性布置涡流发生器,从而改变叶轮进口处流场, 通过数值计算对不同配置参数下离心压缩机性能进行对比分析[18]。该文章对涡流发生器应用于离心叶轮内流动控制的效果进行了初步的验证和研究, 通过数值分析表明这种方法确实可以改善叶轮内部流动, 达到提高叶轮性能的效果。但是该主动控制技术结构复杂,而且需要外加控制设备和能量,对要求经济耐用的离心通风机产品不具有竞争力。
    采用边界层控制方式提高离心叶轮性能的另外一种方法就是采用自适应边界层控制技术。1999年,黄东涛等人提出了离心通风机叶轮设计中采用长短叶片开缝方法[19-20],厂房通风,该方法采用的串列叶栅技术,综合了长短叶片和边界层吹气两种技术的优点,利用边界层吹气技术抑制边界层的增长,提高效率,而且试验结果表明[20],该方法可以有效的提高设计和大流量下的风机效率,但对小流量效果不明显。文献[21]用此思想解决了离心叶轮内部积灰的问题。虽然串列叶栅技术在离心压缩机叶轮[20]内没有获得效率提高的效果,但从文献内容看,估计是由于该文作者主要研究的是串联叶片的相位效应,而没有研究串联叶片的径向位置的变化影响导致的。
    理论和试验都表明,离心叶轮的射流尾迹结构随着流量减小更加强烈,而且小流量时,尾迹处于吸力面,设计流量时,尾迹处于吸力面和轮盖交界处。为了提高设计和小流量离心通风机效率,2008年,田华等人提出了叶片开缝技术[22],该技术提出在叶轮轮盖与叶片之间叶片尾部处开缝,引用叶片压力面侧的高压气体吹除吸力面侧的低速尾迹区,直接给叶轮内的低速流体提供能量。最终得到在设计流量和小流量情况下,叶轮开缝后叶片表面分离区域减小,整个流道速度和叶轮内部相对速度分布更加均匀,且最大绝对速度明显减小的结果。这种方法改善了叶轮内部流场的流动状况,达到了提高离心叶轮性能和整机性能的效果,而且所形成的射流可以吹除叶片吸力面的积灰,有利于叶轮在气固两相流中工作。
    2008年,李景银等人提出在离心风机轮盖上靠近叶片吸力面处开孔的方法[23],利用蜗壳内的高压气体产生射流,从而直接给叶轮内的低速或分离流体提供能量,以减弱由叶轮内二次流所导致的射流-尾迹结构,并可用于消除或解决部分负荷时,常发生的离心叶轮的积灰问题。通过对离心风机整机的数值试验,发现轮盖开孔后,在设计点附近的风机压力提高了约2%,效率提高了1%以上,小流量时压力提高了1.5%,效率提高了2.1%。在设计流量和小流量时,由于轮盖开孔形成的射流,可以明显改善叶轮出口的分离流动,减小低速区域,降低叶轮出口处的最高速度和速度梯度,从而减弱了离心叶轮出口处的射流—尾迹结构。此外,沿叶片表面流动分离区域减小,压力增加更有规律。轮盖开孔方法可以提高设计流量和小流量下的闭式离心叶轮性能和整机性能,如果结合离心叶轮串列叶栅自适应边界层控制技术,有可能全面提高离心叶轮性能。
    3 结论
    综上所述, 近年来对离心通风机叶轮内部流动的研究取得了明显进展, 有些研究成果已经应用到实际设计中,并获得令人满意的结果。目前, 对离心通风机叶轮内部流动的研究仍是比较活跃的研究领域之一,笔者认为可在如下方面进行进一步研究:
    (1)如何将近似模型方法在通风机方面的应用进行更深入的研究,结合已有的叶片设计技术,探索更加高效快速的优化设计方法;
    (2)如何将串列叶栅、轮盖开孔和叶片开缝等离心叶轮自适应边界层控制技术结合起来,在全工况范围内改善离心通风机叶轮的性能,提高离心风机的效率;
    (3)考虑非定常特性的设计方法研究。目前,研究离心通风机叶轮内部的流动均仍以定常计算为主,随着动态试验和数值模拟的发展, 人们对于叶轮机械内部流动的非定常现象及其机理将越来越清楚, 将非定常的研究成果应用于设计工作中是非常重要的方面

        中国风机产业网  风机购买后应如何安装和使用它呢?不同的风机安装的方式不同,这需要根据很多因素来决定的因此选择一个合适的安装方式能让风机更好的发挥效果,有些安装方法确实能给用户带来很好的效果。本人在风机社区了解到:

        首先要准备好风机的安装环境,在安装风机前对安装环境和安装前的一些准备工作都要做充足了。然后安装标记不可忘记,因为它可能帮助用户更好的识别风机的各个组成部分以及安装过程中注意的一些小细节。通常“A”、“B”号各位一台,就位前注意区分与进出口风管的关系、叶轮旋向等。风机转动组找平、找正,这个还是有一定的办法可以用的,将磁力座贴在主轴上,将百分表表头指向轴承外圈或轴承座弹位端面上(既上端盖加工面上);此时旋转主轴一周以上其表针读数不大于0.15mm即可,此读数值为该轴承座与主轴的垂直情况。

        然后检查地基的外形尺寸、各预留空洞的中心尺寸;地基外型尺寸偏差应在±20mm范围内,各预留空洞的中心尺寸偏差应在±10mm之间;基础划线,以主厂房建筑基点或锅炉纵横中心线为基准,在数据上一定要做到精益求精,这样才能把安装误差降到最低。

        除了这两点之外,安装风机的过程中还要注意电动机的使用环境,一般情况下风机电动机需要找平、找正,调整风机与电机主轴同轴度(既联轴器找平找正)。用三块百分表找正,轴向两块、径向一块;每盘动轴90度,记录数据,测量其上下左右的读数,调整同轴度,使其误差≤0.05mm;且两靠背轮之间应有10mm间隙。

        直连式安装大概就这些需要注意的要点,当然在安装进气箱等其他组件时也需要非常谨慎,尽可能的把一些故障解决在安装中,这样也能为风机的正式使用提供更好的基础。总之只有正确地安装好风机才能使后期长久地使用。



    离心式通风机作为流体机械的一种重要类型,广泛应用于国民经济各个部门 , 是主要的耗能机械之一,也是节能减排的一个重要研究领域。 研究过程表明 : 提高离心通风机叶轮设计水平 , 是 提高离心通风机效率、扩大其工况范围的关键。本文将从离心通风机叶轮的设计和利用 边界层控制技术提高离心通风机叶轮性能这 两个方面,对近年来提出的 提高离心通风机性能的方法和途径 的研究进行归纳分析。 

     离心通风机叶轮的设计方法简述
     如何设计高效、工艺简单的 离心通风机一直是科研人员研究的主要问题, 设计高效叶轮叶片是解决这一问题的主要途径。
     叶轮是风机的核心气动部件,叶轮内部流动的好坏直接决定着整机的性能和效率。因此国内外学者为了了解叶轮内部的真实流动状况,改进叶轮设计以提高叶轮的性能和效率,作了大量的工作。
     为了设计出高效的离心叶轮 , 科研工作者们从各种角度来研究气体在叶轮内的流动规律 , 寻求最佳的叶轮设计方法。最早使用的是一元设计方法,通过大量的统计数据和一定的理论分析,获得离心通风机各个关键截面气动和结构参数的选择规律。在一元方法使用的初期,可以简单地通过对风机各个关键截面的平均速度计算,确定离心叶轮和蜗壳的关键参数,而且一般叶片型线采用简单的单圆弧成型。这种方法非常粗糙,设计的风机性能需要设计人员有非常丰富的经验,有时可以获得性能不错的风机,但是,大部分情况下,设计的通风机效率低下。为了改进,研究人员对叶轮轮盖的子午面型线采用过流断面的概念进行设计 ,如此设计出来的离心叶轮的轮盖为两段或多段圆弧,这种方法设计的叶轮虽然比前一种一元设计方法效率略有提高,但是该方法设计的风机轮盖加工难度大,成本高,很难用于大型风机和非标风机的生产。另外一个重要方面就是改进叶片设计,对于二元叶片的改进方法主要为采用等减速方法和等扩张度方法等 还有 采用给定叶轮内相对速度沿平均流线 分布的方法。 等减速方法 从损失的角度考虑, 气流相对速度在叶轮流道内的流动过程中以同一速率均匀变化,能减少流动损失, 进而 提高叶轮效率 ;等扩张度方法是为了避免局部地区过大的扩张角而提出的方法。 给定的叶轮内相对速度 沿平均流线 的分布是通过控制相对平均流速沿流线 的变化规律,通过简单几何关系,就可以得到叶片型线沿半径的分布。以上方法虽然简单,但也需要比较复杂的数值计算。
     随着数值计算以及电子计算机的高速发展,可以采用更加复杂的方法设计离心通风机叶片 。 苗水淼等 运用“全可控涡”概念, 建立了一种采用流线曲率法在叶轮流道的子午面上进行叶轮设计的设计方法 , 该方法目前已经推广至工程界 , 并已经取得了显著效果。但是此方法中决定叶轮设计成功与否的关键 , 即如何给出子午流面上叶片涡的合理分布。这一方面需要具有较丰富的设计经验;另一方面也需要在设计过程中对设计结果不断改进以符合叶片涡的分布规律 , 以期最终设计出高效率的叶轮机械。对于整个子午面上可控涡的确定,可以采用 沿轮盘、轮盖的给定,可以通过线性插值的方法确定 在整个子午面上的分布 ,也可以通过经验公式确定可控涡的分布 ,也有 利用给定叶片载荷法  设计离心通风机的叶片。以上方法都是采用流线曲率法,设计出的是三元离心叶片,对于二元离心通风机叶片还不能直接应用。但数值计算显示,离心通风机的二元叶片内部流动的结构是更复杂的三维流动。因此,如何利用三维流场计算方法进一步来设计高效二元离心叶轮是提高离心通风机设计技术的关键。
     随着计算技术的不断发展,三维粘性流场计算获得了非常大的进步,据此,有一些研究者提出了近似模型方法。该方法是 针对在工程中完全采用随机类优化方法寻优时计算量过大的问题, 应用统计学的方法, 提出的一种 计算量小、在一定程度上可以保证设计准确性的方法。在近似模型方法应用于叶轮机械气动优化设计方面 , 国内外研究者们已经做了相当一部分工作 , 其中以响应面和人工神经网络方法应用居多。如何有效地将近似模型方法应用于多学科、多工况的优化问题 , 并用较少的设计参数覆盖更大的实际设计空间 , 是一个重要的课题。
     2007 年,席光等提出了近似模型方法在叶轮机械气动优化设计中的应用 。 近似模型的建立过程主要包括 : ( 1 )选择试验设计方法并布置样本点 , 在样本点上产生设计变量和设计目标对应的样本数据;( 2 )选择模型函数来表示上面的样本数据;( 3 )选择某种方法 , 用上面的模型函数拟合样本数据,建立近似模型。以上每一步选择不同的方法或者模型,就相应产生了各种不同的近似模型方法。该方法不仅有利于更准确地洞察设计量和设计目标之间的关系,而且用近似模型来取代计算费时的评估目标函数的计算分析程序,可以为工程优化设计提供快速的空间探测分析工具,降低了计算成本。 在气动优化设计过程中,用该模型取代耗时的高精度的计算流体动力学分析 , 可以加速设计过程 , 降低设计成本。基于统计学理论提出的近似模型方法,有效地平衡了基于计算流体动力学分析的叶轮机械气动优化设计中计算成本和计算精度这一对矛盾。该近似模型方法在试验设计方法基础上,将响应面方法、 Kriging 方法和人工神经网络技术成功地应用于叶轮机械部件的优化设计中,在离心压缩机叶片扩压器、叶轮和混流泵叶轮设计等问题中得到了成功应用 , 展示了广阔的工程应用前景。目前,席光课题组已经建立了离心压缩机部件及水泵叶轮的优化设计系统,并在工程设计中发挥了重要作用。
     2008 年,李景银等在近似模型方法的基础上提出了 控制离心叶轮流道的相对平均速度优化设计方法,将近似模型方法较早的应用于离心通风机叶轮设计。该方法通过给出 流道内气流 平均速度 沿平均流线的设计分布,设计出一组离心风机参数,根据正交性准则,在充分考虑影响叶轮效率因素的基础上,采用正交优化方法进行优化组合,并结合基于流体动力学分析软件的数值模拟,最终 成功开发了与全国推广产品 9-19 同样设计参数和叶轮大小的离心通风机模型,计算全压效率提高了 4% 以上 。该方法 简单易行、合理可靠, 得到了很高的设计开发效率。

     随着理论研究的不断深入和设计方法的不断提高,对于 降低叶轮气动损失、改善叶轮气动性能的措施, 提高离心风机效率的研究,将会更好的应用于工程实际中。
       改善离心通风机内叶轮流动的方法

     叶轮是离心风机的心脏,离心风机叶轮的内部流动 是一个 非常复杂的 逆压过程 , 叶轮的高速旋转和叶道复杂几何形状都使其内部流动变成了非常复杂的三维湍流流动 。由于压差,叶片通道内一般会存在叶片压力面向吸力面的二次流动,同时由于气流 90 °转弯,导致轮盘压力大于轮盖压力也形成了二次流,这一般会导致叶轮的轮盖和叶片吸力面区域出现低速区甚至分离,形成射流—尾迹结构 。由于射流—尾迹结构的存在,导致离心风机效率下降,噪声增大。为了改善离心叶轮内部的流动状况,提高叶轮效率,一个重要的研究方向就是采用边界层控制方式提高离心叶轮性能,这也是近年的热点研究方向。
     2007 年,刘小民等人采用边界层主动控制技术在压缩机进气段选择性布置涡流发生器,从而改变叶轮进口处流场 , 通过数值计算对不同配置参数下离心压缩机性能进行对比分析 。 该文章对涡流发生器应用于离心叶轮内流动控制的效果进行了初步的验证和研究 , 通过数值分析表明这种方法确实可以改善叶轮内部流动 , 达到提高叶轮性能的效果。但是 该主动控制技术结构复杂,而且需要外加控制设备和能量,对要求经济耐用的离心通风机产品不具有竞争力。
     采用边界层控制方式提高离心叶轮性能的另外一种方法就是 采用自适应边界层控制技术。 1999 年,黄东涛等人提出了离心通风机叶轮设计中采用长短叶片开缝方法 ,该方法 采用的串列叶栅技术, 综合了长短叶片和边界层吹气两种技术的优点 ,利用边界层吹气技术抑制边界层的增长,提高效率,而且试验结果表明  ,该方法可以有效的提高设计和大流量下的风机效率,但对小流量效果不明显。文献用此思想解决了离心叶轮内部积灰的问题。虽然串列叶栅技术在离心压缩机叶轮内没有获得效率提高的效果,但从文献内容看,估计是由于该文作者主要研究的是串联叶片的相位效应,而没有研究串联叶片的径向位置的变化影响导致的。
     理论和试验都表明,离心叶轮的射流尾迹结构随着流量减小更加强烈,而且小流量时,尾迹处于吸力面,设计流量时,尾迹处于吸力面和轮盖交界处。为了提高设计和小流量离心通风机效率, 2008 年,田华等人提出了叶片开缝技术 ,该技术提出在 叶轮轮盖与叶片之间 叶片尾部处开缝, 引用叶片压力面侧的高压气体吹除吸力面侧的低速尾迹区, 直接给叶轮内的低速流体提供能量。最终得到 在设计流量和小流量情况下,叶轮开缝后叶片表面分离区域减小,整个流道速度和叶轮内部相对速度分布更加均匀,且最大绝对速度明显减小的结果。这种方法改善了叶轮内部流场的流动状况,达到了提高离心叶轮性能和整机性能的效果,而且所形成的射流可以吹除叶片吸力面的积灰,有利于叶轮在气固两相流中工作。
     2008 年,李景银等人提出在 离心风机轮盖上靠近叶片吸力面处开孔的方法 ,利用蜗壳内的高压气体产生射流,从而直接给叶轮内的低速或分离流体提供能量,以减弱由叶轮内二次流所导致的射流 - 尾迹结构,并可用于消除或解决部分负荷时 , 常发生的离心叶轮的积灰问题。通过对离心风机整机的数值试验,发现 轮盖开孔后,在设计点附近的风机压力提高了约 2 %,效率提高了 1 %以上,小流量时压力提高了 1.5 %,效率提高了 2.1 %。在设计流量和小流量时,由于轮盖开孔形成的射流,可以明显改善叶轮出口的分离流动,减小低速区域,降低叶轮出口处的最高速度和速度梯度,从而减弱了离心叶轮出口处的射流—尾迹结构。此外,沿叶片表面流动分离区域减小,压力增加更有规律。轮盖开孔方法可以提高设计流量和小流量下的闭式离心叶轮性能和整机性能,如果结合离心叶轮串列叶栅自适应边界层控制技术,有可能全面提高离心叶轮性能。
      结论
     综上所述 , 近年来 对离心 通 风机叶轮内部流动的研究取得了明显进展 , 有些研究成果已经应用到实际设计中,并获得令人满意的结果。目前 , 对离心通风机叶轮内部流动的研究仍是比较活跃的研究领域之一 ,笔者认为可在如下方面进行进一步研究:
     ( 1 )如何将近似模型方法在通风机方面的应用进行更深入的研究,结合已有的叶片设计技术,探索更加高效快速的优化设计方法;
     ( 2 )如何将 串列叶栅 、轮盖开孔和叶片开缝等离心叶轮自适应边界层控制技术结合起来,在全工况范围内改善离心 通 风机叶轮的性能,提高离心风机的效率;     ( 3 )考虑非定常特性的设计方法研究。目前,研究离心 通 风机叶轮内部的流动均仍以定常计算为主,随着动态试验和数值模拟的发展 , 人们对于叶轮机械内部流动的非定常现象及其机理将越来越清楚 , 将非定常的研究成果应用于设计工作中是非常重要的方面。


    网易财经6月1日讯 在国家首轮海上风电场项目特许权招标启动之际,明阳风电与国内风电龙头企业华锐风电站到了同一个起跑线上。

    “作为国家重点产业振兴与改造项目,全球首台3兆瓦超紧凑型(SCD)风电机组已经在公司下线。”广东明阳风电产业集团有关负责人告诉网易财经。

    据介绍,3兆瓦超紧凑型风机专门针对近岸型和海上风电的特点进行设计,发电量是明阳传统1.5兆瓦风机的两倍,但重量却轻了近1/3。“齿轮箱避免了传统高速齿轮箱故障率较高的弊端,发电机则比传统机器体积小了许多,但低电压穿越能力和电网支撑能力保留了下来。”明阳风电董事长张传卫说。

    此前,拥有3兆瓦系列风电机组开发能力的国内风电企业只有华锐风电,2009年3月20日,由该公司生产的中国第一台3兆瓦海上风电机组在上海东海大桥风电场一次性吊装成功。

    早在2008年,华锐风电就以22%的市场份额超越金风科技成为国内最大的风电机组制造企业,并排名全球第七。风电行业世界权威咨询机构BTM今年3月发布的《世界风能发展》报告则显示,华锐风电2009年凭借新增装机容量351万千瓦名列全球第三,全球市场份额也由2008年的5.0%跃升至9.2%。

    目前1.5-3兆瓦系列产品年产500万千瓦的明阳风电虽然不能与华锐风电分庭抗礼,但3兆瓦海上风机却为其抢得了市场先机。“首批两台超紧凑型3兆瓦风机将在徐闻和南通风场启用。”张传卫说。

    广东湛江徐闻海上风电场是华南首个海上风电示范工程,已被广东省发改委列为2009年省重点建设项目,由明阳风电和广东粤电集团共同建设,计划于今年开工;南通风场即国电集团旗下龙源江苏如东潮间带试验风场,是世界首个海上潮间带试验风场,已经于2009年10月20日并网发电成功,厂房降温负压风机,该风场使用的两台海上型1.5MW 风机即出自明阳风电之手。

    依托一南一北两大电力集团,明阳风电参与竞标海上风电场项目特许权就会顺畅得多。据悉,5月18日启动的国家首轮海上风电场项目特许权招标,主要位于江苏和山东两个省内,将分别选择两个30万千瓦的近海风电场和两个20万千瓦的滩涂风电场项目。

    “而且,此次海上风电特许权项目招标,将采取‘捆绑式’招标的方式进行,即将项目开发商、风电设备商和专业安装公司三者联合招标。”国家发改委能源研究所副所长李俊峰说。

    风电发电量现居全国第一的国电集团,目前利润的三分之一来自风电,自然对此次招标格外重视。而早在2006年就与之开展合作的明阳风电,无疑会在未来的招标中受益。

    “2009年中国已成为第一大风电装机市场,为满足未来的市场需求,我们投资30亿元建设的生产基地将于今年8月正式投产,届时将形成年产300台3兆瓦超紧凑型风机的能力。”明阳风电有关负责人告诉网易财经。

     





    国产高压变频器在发电厂吸风机上的应用
         题目的提出
      中国大唐团体公司陡河电厂#2发电机组(125MW)属于调峰机组,机组运行时基本带70-80%负荷,两台吸风机采用进口挡板调节。为了保证电机的安全稳定运行,选用的风机电机的备用容量较大。机组满负荷运行时,吸风机进口挡板开度约60%,机组调峰时,风机进口挡板开度约40%左右,能量损失大,风机效率低。为了进一步适应厂网分开、竞价上网的电力体制,节约能源,降低厂用电率,保护环境,简化运行方式,减少转动设备的磨损等,我公司决定在陡河电厂、下花园电厂及张家口电厂对部分风机、水泵采用高压变频器调速装置,我公司在国际上公然招标采购高压变频器。北京利德华福电气技术有限公司为国内唯一中标单位,并一举中标8台高压变频器。其中陡河电厂#2炉2台吸风机电机上分别加装一套北京利德华福电气技术有限公司生产的6 kV/1000 kW高压变频器装置。 


            


             1、HARSVERT-A06/105型高压变频装置原理 
      变频装置采用多电平串联技术,6KV系统结构见图1,由移相变压器、功率单元和控制器组成。6KV系列有21个功率单元,每7个功率单元串联构成一相。


               每个功率单元结构以及电气性能完全一致,可以互换,其电路结构见图2,为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到如图3所示的波形。
        

        


               每个功率单元结构上完全一致,可以互换,其电路结构见图2,为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到如图3所示的波形。 


            


               输进侧由移相变压器给每个单元供电,移相变压器的副边绕组分为三组,构成42脉冲整流方式;这种多级移相叠加的整流方式可以大大改善网侧的电流波形,使其负载下的网侧功率因数接近1。


               另外,由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,每个功率单元等效为一台单相低压变频器。


               输出侧由每个单元的U、V输出端子相互串接成星型接法直接给高压电机供电,通过对每个单元的PWM波形进行重组,可得到如图4所示的门路正弦PWM波形。这种波形正弦度好,dv/dt小,可减少对电缆和电机的尽缘损坏,无须输出滤波器就可以使输出电缆长度很长,电机不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗大大减少,消除了由此引起的机械振动,减小了轴承和叶片的机械应力。


               当某一个单元出现故障时,通过使图2中的软开关节点K导通,可将此单元旁路出系统而不影响其他单元的运行,变频器可持续降额运行,可减少很多场合下停机造成的损失。


            


             2、变频改造方案简介
      #2炉引风机是两台双侧布置,目前其引风机的出力调节由人工调节挡板来实现。由于引风机设计时冗余功率较大,加上风量控制采用档风板引起的阻力损耗,造成厂用电率高,影响机组的经济运行。
    电动机参数         引风机参数
    型号:Y1000-8        型号: G4-73-11-28D
    额定功率:1000kW       额定风量:455000m3/h
    额定电压:6kV        额定风压: 6460Pa 
    额定电流:119A       风机转速: 742rpm
    额定频率:50Hz
    额定转速:743r/min
      为了充分保证系统的可靠性,为变频器同时加装工频旁路装置,变频器异常时,变频器停止运行,电机可以直接手动切换到工频下运行。工频旁路由3个高压隔离开关QS1、QS2和QS3组成(见图,其中QF为甲方原有高压开关)。要求QS2不能与QS3同时闭合,在机械上实现互锁。变频运行时,QS1和QS2闭合,QS3断开;工频运行时,QS3闭合,QS1和QS2断开。


            


               为了实现变频器故障的保护,变频器对6KV开关QF进行联锁,一旦变频器故障,变频器跳开QF,要求甲方对QF的合分闸电路进行适当改造。工频旁路时,变频器应答应QF合闸,撤消对QF的跳闸信号,使电性能正常通过QF合闸工频启动。


             3、变频装置调试数据对比
        中国电力科学研究院对相关参数的丈量结果如下
    表1 工频挡板调节和变频调速调节2台吸风机系统的综合输进功率对比机组负荷


            

    机组负荷
    (MW)
    工频挡板调节
    (kW)
    变频调速调节
    (kW)
    减少的综合输进功率
    (kW)
    90962391571
    100995523472
    1101062573489
    1251126606520


            

       
    图6 机组负荷90MW时变频器输出电压(波形较电流差)电流波形


            
    图7 变频启动时变频器输出电压(上)和电流(下)波形 


               测试结果表明,72%负荷时节能率为59%,满负荷时节能率也高达46%。同时,电机变频启动时,启动电流平稳上升,电机启动非常平稳。 


             4、变频改造后的效益计算 
    1) 全年满负荷时,投进2台变频器后,估算年节电量为:    
        520kW*5500h=2860000 kWh 
      年至少节省电费:2860000 kWh*0.326元/kW.h=93.2万元
    2) 全年72%负荷运行时,投进2台变频器后,估算年节电量为:    
        571kW*5500h=3140500 kWh
      年至少节省电费:3140500 kWh*0.326元/kW.h=102.4万元


               可见,在满负荷全年运行或者72%负荷全年运行情况下,投进2台北京利德华福电气技术有限公司生产的国产高压变频器后,我公司全年节约电费均可达100万元左右。另外,由于北京利德华福电气技术有限公司系列变频器功率因数可达0.95以上,大于电机功率因数0.85,减少大量无功。并且实现电机软启动,可避免因大电流启动冲击造成对电机尽缘的影响,减少电机维护量,节约检验维护用度,同时电机寿命大幅度延长。 


             5、结束语
        高压变频装置由于其节能效果明显,采用变频调速后,实现了电机的软启动,延长电机的寿命,引风机挡板全开,也减少了风道的振动与磨损。总之,以北京利德华福公司为代表生产的国产高压变频器的可靠运行性能及良好的节能效果为我公司创造了巨大的经济效益和社会效益,值得大力推荐和应用。




    关于风幕机、风机、换气扇等通风产品选型的意见与参考
        


             风幕机的作用:
    风幕机用于电子、仪表、纺织、医院、大型商场、超市、宾馆、酒店、剧院及冷藏食品库便于敞开场所。根据不同场所选用不同型号、规格产品,具休根据用户的门洞宽度和高度来确定其用量,可采用二台或三台以上联接。本机有快、慢档的控制线路功能,客户可根据气温自行调节风量、风流角度,获得合适的风度。


             风幕机的选型:
    选用风幕机应根据门的实际宽度和高度,参照风幕机的技术参数来选择。
    1、风幕机的长度应略长于门的宽度,可采用多台连接使用。
    2、门的高度应在风幕机的有效隔断距离之内,如果安装的实际环境不同,例如靠近公路或处于风沙较大的地区,应选用风幕机的有效隔断距离大于门的高度的风幕机。
    3、门的高度较高时,应尽量选用遥控型的。
    4、在油烟浓度大的地方,如:厨房,应选用金属风轮的风幕机。


            
    风机选型  风机的选型一般按下述步骤进行:
    1、计算确定隧道内所需的通风量;
    2、计算所需总推力It
    It=△P×At(N)
    其中,At:隧道横截面积(m2)
    △ P:各项阻力之和(Pa);一般应计及下列4项:
    1) 隧道进风口阻力与出风口阻力;
    2) 隧道表面摩擦阻力,悬吊风机装置、支架及路标等引起的阻力;
    3) 交通阻力;
    4) 隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力.
    3、确定风机布置的总体方案
    根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T.
    满足m×n×T≥Tt的总推力要求,同时考虑下列限制条件:
    1) n台风机并列时,其中心线横向间距应大于2倍风机直径
    2) m组(台)风机串列时,纵向间距应大于10倍隧道直径
    4、单台风机参数的确定
    射流风机的性能以其施加于气流的推力来衡量,风机产生的推力在理论上等于风机进出口气流的动量差(动量等于气流质量流量与流速的乘积),在风机测试条件先,进口气流的动量为零,所以可以计算出在测试条件下,风机的理论推力:
    理论推力=p×Q×V=pQ2/A(N)
    P:空气密度(kg/m3)
    Q:风量(m3/s)
    A:风机出口面积(m2)
    试验台架量测推力T1一般为理论推力的0.85-1.05倍.取决于流场分布与风机内部及*的结构.风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量测推力还不等于风机装在隧道内所能产生的可用推力T,这是因为风机吊装在隧道中时会受到隧道中气流速度产生的卸荷作用的影响(柯达恩效应),可用推力减少.影响的程度可用系数K1和K2来表示和计算:
    T=T1×K1×K2或T1=T(K1×K2)
    其中T:安装在隧道中的射流风机可用推力(N)
    T1: 试验台架量测推力(N)
    K1:隧道中平均气流速度以及风机出口风速对风机推力的影响系数
    K2:风机轴流离隧道壁之间距离的影响系数
    以下场合风机选型使用分析
    仓库通风
    首先,看仓储货品是否是易燃易爆货品,如:油漆仓库等,必须选择防爆系列风机。 其次,看噪声要求高低,可以选择屋顶风机或环保式离心风机,(而且有款屋顶风机是风力启动,更可以省电呢。
    最后,看仓库空气所需换气量的大小,可以选择最常规的轴流风机SF型或排风扇FA型。
    厨房排风
    首先,对于室内直排油烟的厨房(即排风口在室内墙上),可以根据油烟大小选择SF型轴流风机或FA型排气风扇。
    其次,对于油烟大,且油烟需要经由长管道,并管道里有打弯处理的厨房,强烈建议使用离心风机(4-72离心风机最为通用,11-62低噪声环保型离心风机也很实用),这是因为离心风机的压力较轴流风机大,且油烟不经过电机,对电机的保养和换洗更容易。 最后,建议油烟强烈的厨房选用以上两种方案并用,效果更佳。
    高档场所通风
    对于酒店、茶坊、咖啡吧、棋牌室、卡拉OK厅等高档场所通风,就不适宜用常规风机了。
    首先,对于小室的通风,使通风管道连接中央通风管的房间,可以在兼顾外观与噪声基础上,选择FZY系列小型轴流风机,它体积小,塑料或铝制外观,低噪声与高风量并存。
    其次,对风量与噪声要求更严格的角度说,风机箱是最好选择。箱体内部有消音棉,外接中央通风管道后可以达到减噪的显著效果。
    最后,补充一下,对于健身房的室内吹风,务必选则大风量的FS型工业电风扇,而非SF型岗位式轴流风机。这是从外观及安全性方面考虑。


                换气扇按进排气口分为隔墙型(隔墙孔的两侧都是自由空间,从隔墙的一侧向另一侧换气)、导管排气型(一侧从自由空间进气,而另一侧通过导管排气)、导管进气型(一侧通过导管进气,而另一侧向自由空间排气)、全导管型(换气扇两侧均安置导管,通过导管进气和排气)。按气流形式分为离心式(空气由平行于转动轴的方向进入,垂直于轴的方向排出)、轴流式(空气由平行于转动轴的方向进入,仍平行于轴的方向排出)和横流式(空气的进入和排出均垂直于轴的方向)。


               由电动机带动风叶旋转驱动气流,使室内外空气交换的一类空气调节电器。又称通风扇。换气的目的就是要除去室内的污浊空气,调节温度、湿度和感觉效果。换气扇广泛应用于家庭及公共场所。
    早期的产品只能单向排气,称为排气(风)扇。1964年出现百叶窗式换气扇。中国广东省江门市家用电器工业公司于1974年首次生产200mm开敞式排气扇。沈阳市排风扇厂于 1976年开始生产300mm金属型百叶窗式排气扇,1979年生产300mm双向百叶窗式换气扇。


             二、换气扇的分类 
    换气扇按进排气口分为隔墙型(隔墙孔的两侧都是自由空间,从隔墙的一侧向另一侧换气)、导管排气型(一侧从自由空间进气,而另一侧通过导管排气)、导管进气型(一侧通过导管进气,而另一侧向自由空间排气)、全导管型(换气扇两侧均安置导管,通过导管进气和排气)。按气流形式分为离心式(空气由平行于转动轴的方向进入,垂直于轴的方向排出)、轴流式(空气由平行于转动轴的方向进入,仍平行于轴的方向排出)和横流式(空气的进入和排出均垂直于轴的方向)。


             三、换气扇换气方式
    换气扇的换气方式有排出式、吸入式、并用式三种。排出式从自然进气口进入空气,通过换气扇排出污浊空气;吸入式通过换气扇吸入新鲜空气,从自然排气口排出污浊空气;并用式是吸气与排气均由换气扇来完成。
    换气量不同场所需要换气量和换气次数不同。一个人或每平方米所需的新鲜空气量,称为所需换气量。在1小时内更换新鲜空气的次数,称为换气次数。
    结构百叶窗式换气扇是使用最广泛的换气扇,主要由电动机、扇叶、风框、面板、百叶窗以及专用的拉线开关等附属元件组成。电动机一般采用单相电容运转异步电动机。 150mm规格以下的换气扇也采用罩极式电动机。扇叶一般用 ABS、AS塑料注塑成型,重量轻而强度高。风框通常用薄钢板冲压和点焊制成,也有采用塑料注塑成型。面板采用塑料注塑成型。百叶窗通常采用薄钢板或马口铁冲压成型。
    换气扇的规格按其扇叶直径分为 100、150、200、250、300、350、400、450和500mm。
     


            

     ,车间排烟系统;


    相关阅读:  
    ?关于通风产品选型的意见与参考
    ?关于风机选型问题的参考意见
    ?关于风机选型的基本参考
    ?风幕机的选型
    ?风幕机选型参考及需要注意事项
    ?关于换气扇如何选型
    ?关于风幕机的选型、安装问题的解答
    ?异型风幕机与普通风幕机的区别
    ?隧道通风的风机选型
    ?换气扇的选型
    ?诱导通风系统中的产品选型
    ?诱导通风系统的产品选型
    ?风幕机选型
    ?风幕机如何选型
    ?风机设备选型参考
    ?异型风幕机与普通风幕机的区别问题
    ?绿岛风风幕机选型
    ?天气炎热,厂房通风通风散热风机选型建议
     
     
     

    收录时间:2011年03月10日 23:24:12 来源:ccen 作者:

    ???? 1.透风机和管道的安装,应保持在高速运转情况下稳定牢固。不得露天安装,作业场地必须有防火 设备 。 2.风管接头应严密,口径不同的风管不得混合连接,风管转角处应做成大圆角。风管出风口距工作面宜为6~10m。风管安装不应妨碍职员行走及车辆通行;若排挤安装,支点及悬挂应牢固可靠。隧道工作面四周的管道应采取保护措施,防止放炮砸坏。 3.透风机及透风管应装有风压水柱表,并应随时检查透风情况。 4.启动前应检查并确认主机和管件的连接符合要求,风扇转动平稳、电器部分包括电流过载继电保护装置均齐全后,方可启动。 5.运行中,运转应平稳无异响,如发现异常情况时,应立即停机检验。 6.运行中,当电动机温升超过铭牌规定时,应停机降温。 7.运行中不得检验。对无逆止装置的透风机,应待风道回风消失后方可检验。 8.严禁在透风机和透风管上放置或悬挂任何物件。 9.作业后,应切断电源。长期停用时,应放置在干燥的室内。 相关阅读:

    AG8旗舰厅负压风机-大北农集团巨农种猪示范基地风机设备水帘设备供应商!台湾九龙湾负压风机配件供应商! 主要产品猪舍通风降温,猪棚通风降温,猪场通风降温,猪舍风机,养殖地沟风机,猪舍地沟风机,猪舍多少台风机,厂房多少台风机,车间多少台风机,猪舍什么风机好,厂房什么风机好,车间什么风机好,多少平方水帘,多大的风机,哪个型号的风机 相关的主题文章:
    推荐案例